These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 8797379)
1. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins. Ingersoll CM; Jordan JD; Bright FV Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379 [TBL] [Abstract][Full Text] [Related]
2. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin. Wang R; Sun S; Bekos EJ; Bright FV Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles. Lundgren JS; Heitz MP; Bright FV Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel. Jordan JD; Dunbar RA; Bright FV Anal Chem; 1995 Jul; 67(14):2436-43. PubMed ID: 8686877 [TBL] [Abstract][Full Text] [Related]
5. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Narazaki R; Maruyama T; Otagiri M Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146 [TBL] [Abstract][Full Text] [Related]
6. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein. Lundgren JS; Salins LL; Kaneva I; Daunert S Anal Chem; 1999 Feb; 71(3):589-95. PubMed ID: 9989379 [TBL] [Abstract][Full Text] [Related]
7. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin. Narazaki R; Maruyama T; Otagiri M Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230 [TBL] [Abstract][Full Text] [Related]
8. Urea-induced denaturation of human serum albumin labeled with acrylodan. González-Jiménez J; Cortijo M J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277 [TBL] [Abstract][Full Text] [Related]
9. Acrylodan can label amino as well as sulfhydryl groups: results with low-density lipoprotein, lipoprotein[a], and lipid-free proteins. Mims MP; Sturgis CB; Sparrow JT; Morrisett JD Biochemistry; 1993 Sep; 32(35):9215-20. PubMed ID: 8369288 [TBL] [Abstract][Full Text] [Related]
10. Resonance energy transfer between tryptophan-214 in human serum albumin and acrylodan, prodan, and promen. González-Jiménez J; Cortijo M Protein J; 2004 Jul; 23(5):351-5. PubMed ID: 15328891 [TBL] [Abstract][Full Text] [Related]
11. Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study. Moreno F; Cortijo M; González-Jiménez J Photochem Photobiol; 1999 Nov; 70(5):695-700. PubMed ID: 10568165 [TBL] [Abstract][Full Text] [Related]
12. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin. Park KK; Park JW; Hamilton AD Org Biomol Chem; 2009 Oct; 7(20):4225-32. PubMed ID: 19795061 [TBL] [Abstract][Full Text] [Related]
13. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Gelamo EL; Silva CH; Imasato H; Tabak M Biochim Biophys Acta; 2002 Jan; 1594(1):84-99. PubMed ID: 11825611 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence Behavior of Schiff Base-N, N'-bis(salicylidene) Trans 1, 2-Diaminocyclohexane in Proteinous and Micellar Environments. Roy N; Nath S; Paul PC; Singh TS J Fluoresc; 2017 Nov; 27(6):2295-2311. PubMed ID: 28831629 [TBL] [Abstract][Full Text] [Related]
15. Binding of Sulpiride to Seric Albumins. da Silva Fragoso VM; de Morais Coura CP; Hoppe LY; Soares MA; Silva D; Cortez CM Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26742031 [TBL] [Abstract][Full Text] [Related]
16. Investigations on the interactions of DiAmsar with serum albumins: Insights from spectroscopic and molecular docking techniques. Hooshyar Z; Rezanejade Bardajee G; Kakavand N; Khanjari M; Dianatnejad N Luminescence; 2015 Aug; 30(5):538-48. PubMed ID: 25311912 [TBL] [Abstract][Full Text] [Related]
17. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies. Maiti J; Biswas S; Chaudhuri A; Chakraborty S; Chakraborty S; Das R Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():191-199. PubMed ID: 28039847 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic investigation of the interaction of the toxicant, 2-naphthylamine, with bovine serum albumin. Liu Y; Chen M; Bian G; Liu J; Song L J Biochem Mol Toxicol; 2011; 25(6):362-8. PubMed ID: 21800401 [TBL] [Abstract][Full Text] [Related]
19. A fluorescent spectroscopy and modelling analysis of anti-heparanase aptamers-serum protein interactions. Silva D; Cortez CM; Silva CM; Missailidis S J Photochem Photobiol B; 2013 Oct; 127():68-77. PubMed ID: 23968994 [TBL] [Abstract][Full Text] [Related]
20. Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino)naphthalene-2,3-dicarboxylate: An electroneutral solvatochromic fluorescent probe. Mallick S; Pal K; Koner AL J Colloid Interface Sci; 2016 Apr; 467():81-89. PubMed ID: 26773610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]