These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8797831)

  • 1. Production of 1,5-anhydroglucitol from 1,5-anhydrofructose in erythroleukemia cells.
    Suzuki M; Kametani S; Uchida K; Akanuma H
    Eur J Biochem; 1996 Aug; 240(1):23-9. PubMed ID: 8797831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic production of 1,5-anhydrofructose and 1,5-anhydroglucitol in rat by the third glycogenolytic pathway.
    Kametani S; Shiga Y; Akanuma H
    Eur J Biochem; 1996 Dec; 242(3):832-8. PubMed ID: 9022716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic description of the anhydrofructose pathway of glycogen degradation; I. Identification and purification of anhydrofructose dehydratase, ascopyrone tautomerase and alpha-1,4-glucan lyase in the fungus Anthracobia melaloma.
    Yu S; Refdahl C; Lundt I
    Biochim Biophys Acta; 2004 May; 1672(2):120-9. PubMed ID: 15110094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,5-Anhydroglucitol promotes glycogenolysis in Escherichia coli.
    Shiga Y; Kametani S; Kadokura T; Akanuma H
    J Biochem; 1999 Jan; 125(1):166-72. PubMed ID: 9880813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic description of the anhydrofructose pathway of glycogen degradation II. Gene identification and characterization of the reactions catalyzed by aldos-2-ulose dehydratase that converts 1,5-anhydro-D-fructose to microthecin with ascopyrone M as the intermediate.
    Yu S
    Biochim Biophys Acta; 2005 May; 1723(1-3):63-73. PubMed ID: 15716041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and accumulation of 1,5-anhydro-D-glucitol in the human erythroleukemia cell line K-562.
    Yamanouchi T; Tachibana Y; Sekino N; Akanuma H; Akaoka I; Miyashita H
    J Biol Chem; 1994 Apr; 269(13):9664-8. PubMed ID: 8144554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of 1,5-anhydro-D-fructose and the enolone ascopyrone P, metabolites of the anhydrofructose pathway of glycogen and starch degradation, for their possible application in fruits, vegetables, and beverages as antibrowning agents.
    Yuan Y; Mo S; Cao R; Westh BC; Yu S
    J Agric Food Chem; 2005 Nov; 53(24):9491-7. PubMed ID: 16302767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,5-Anhydro-D-fructose: biocatalytic and chemical synthetic methods for the preparation, transformation and derivatization.
    Lundt I; Yu S
    Carbohydr Res; 2010 Jan; 345(2):181-90. PubMed ID: 20004890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR of all-carbon-13 sugars: an application in development of an analytical method for a novel natural sugar, 1,5-anhydrofructose.
    Kametani S; Mizuno H; Shiga Y; Akanuma H
    J Biochem; 1996 Jan; 119(1):180-5. PubMed ID: 8907194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anhydrofructose pathway and its possible role in stress response and signaling.
    Yu S; Fiskesund R
    Biochim Biophys Acta; 2006 Sep; 1760(9):1314-22. PubMed ID: 16822618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of 1,5-anhydro-D-glucitol from glucose in rat hepatoma cells.
    Suzuki M; Mizuno H; Akanuma Y; Akanuma H
    J Biochem; 1994 Jan; 115(1):87-92. PubMed ID: 8188642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional synthesis and utilization of 1,5-anhydroglucitol in Escherichia coli.
    Shiga Y; Mizuno H; Akanuma H
    J Bacteriol; 1993 Nov; 175(22):7138-41. PubMed ID: 8226660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli phosphorylates 1,5-Anhydroglucitol and releases 1,5-Anhydroglucitol 6-phosphate when glucose is absent in the medium.
    Shiga Y; Kametani S; Mizuno H; Akanuma H
    J Biochem; 1996 Jan; 119(1):173-9. PubMed ID: 8907193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 1,5-anhydro-D-fructose on selected glucose-metabolizing enzymes.
    Taguchi T; Haruna M; Okuda J
    Biotechnol Appl Biochem; 1993 Dec; 18(3):275-83. PubMed ID: 8297506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anhydrofructose pathway of glycogen catabolism.
    Yu S
    IUBMB Life; 2008 Dec; 60(12):798-809. PubMed ID: 18785261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ; Secchi EF; Lee JW; Sato S; Kubo E; Akagi Y; Kador PF
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-dependent uptake of 1,5-anhydro-D-glucitol via the transport systems for D-glucose and D-mannose in the kidney epithelial cell line, LLC-PK1.
    Saito H; Ohtomo T; Inui K
    Nihon Jinzo Gakkai Shi; 1996 Oct; 38(10):435-40. PubMed ID: 8940824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    J Clin Invest; 1971 Oct; 50(10):2104-12. PubMed ID: 4398937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced levels of plasma 1,5-anhydroglucitol in diabetic patients.
    Akanuma H; Ogawa K; Lee Y; Akanuma Y
    J Biochem; 1981 Jul; 90(1):157-62. PubMed ID: 7287673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy.
    Van den Enden MK; Nyengaard JR; Ostrow E; Burgan JH; Williamson JR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1675-85. PubMed ID: 7601647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.