BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8797858)

  • 1. Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism.
    Osman AM; Koerts J; Boersma MG; Boeren S; Veeger C; Rietjens IM
    Eur J Biochem; 1996 Aug; 240(1):232-8. PubMed ID: 8797858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of iron to manganese substitution on microperoxidase 8 catalysed peroxidase and cytochrome P450 type of catalysis.
    Primus JL; Boersma MG; Mandon D; Boeren S; Veeger C; Weiss R; Rietjens IM
    J Biol Inorg Chem; 1999 Jun; 4(3):274-83. PubMed ID: 10439072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8.
    Dorovska-Taran V; Posthumus MA; Boeren S; Boersma MG; Teunis CJ; Rietjens IM; Veeger C
    Eur J Biochem; 1998 May; 253(3):659-68. PubMed ID: 9654063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals.
    Ricoux R; Boucher JL; Mansuy D; Mahy JP
    Eur J Biochem; 2001 Jul; 268(13):3783-8. PubMed ID: 11432746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MP8-dependent oxidative dehalogenation: evidence for the direct formation of 1,4-benzoquinone from 4-fluorophenol by a peroxidase-type of reaction pathway.
    Osman AM; Boeren S; Veeger C; Rietjens IM
    Chem Biol Interact; 1997 May; 104(2-3):147-64. PubMed ID: 9212781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyrin-Fe(III)-hydroperoxide and porphyrin-Fe(III)-peroxide anion as catalytic intermediates in cytochrome P450-catalyzed hydroxylation reactions: a molecular orbital study.
    Zakhariev O; Trautwein AX; Veeger C
    Biophys Chem; 2000 Dec; 88(1-3):11-34. PubMed ID: 11152267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase.
    Halliwell B
    Biochem J; 1977 Jun; 163(3):441-8. PubMed ID: 195574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular orbital-based quantitative structure-activity relationship for the cytochrome P450-catalyzed 4-hydroxylation of halogenated anilines.
    Cnubben NH; Peelen S; Borst JW; Vervoort J; Veeger C; Rietjens IM
    Chem Res Toxicol; 1994; 7(5):590-8. PubMed ID: 7841336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of aniline hydroxylation by hemoglobin and microsomal cytochrome P450 using stable isotopes.
    Barton HA; Marletta MA
    Toxicol Lett; 1994 Feb; 70(2):147-53. PubMed ID: 8296319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the peptide chain on the kinetics and stability of microperoxidases.
    Spee JH; Boersma MG; Veeger C; Samyn B; Van Beeumen J; Warmerdam G; Canters GW; Van Dongen WM; Rietjens IM
    Eur J Biochem; 1996 Oct; 241(1):215-20. PubMed ID: 8898909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the substrate and the high-valent-iron-oxo porphyrin cofactor as a possible factor influencing the regioselectivity of cytochrome P450 catalysed aromatic ring hydroxylation of 3-fluoro(methyl)anilines.
    Koerts J; Boeren S; Vervoort J; Weiss R; Veeger C; Rietjens IM
    Chem Biol Interact; 1996 Jan; 99(1-3):129-46. PubMed ID: 8620563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the regioselectivity and mechanism of the aromatic hydroxylation of monofluoroanilines.
    Cnubben NH; Vervoort J; Veeger C; Rietjens IM
    Chem Biol Interact; 1992 Dec; 85(2-3):151-72. PubMed ID: 1493607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monooxygenase activities of dioxygenases. Benzphetamine demethylation and aniline hydroxylation reactions catalyzed by indoleamine 2,3-dioxygenase.
    Takikawa O; Yoshida R; Hayaishi O
    J Biol Chem; 1983 Jun; 258(11):6808-15. PubMed ID: 6406489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catalase activity of Nalpha-acetyl-microperoxidase-8.
    Jeng WY; Tsai YH; Chuang WJ
    J Pept Res; 2004 Sep; 64(3):104-9. PubMed ID: 15317500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemin-mediated para-hydroxylation of aniline: a potential model for oxygen activation and insertion reactions of mixed function oxidases.
    Adams PA; Berman MC
    J Inorg Biochem; 1982 Aug; 17(1):1-14. PubMed ID: 7119772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase.
    Chen SX; Schopfer P
    Eur J Biochem; 1999 Mar; 260(3):726-35. PubMed ID: 10103001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme-(hydro)peroxide mediated O- and N-dealkylation. A study with microperoxidase.
    Boersma MG; Primus JL; Koerts J; Veeger C; Rietjens IM
    Eur J Biochem; 2000 Nov; 267(22):6673-8. PubMed ID: 11054121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of iron(II)-nitrosoalkane complexes: a new activity of microperoxidase 8.
    Ricoux R; Boucher JL; Mansuy D; Mahy JP
    Biochem Biophys Res Commun; 2000 Nov; 278(1):217-23. PubMed ID: 11071875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopped-flow kinetic study of the peroxidase reactions of mangano-microperoxidase-8.
    Yeh HC; Yu CH; Wang JS; Chen ST; Su O; Lin WY
    J Biol Inorg Chem; 2002 Jan; 7(1-2):113-9. PubMed ID: 11862547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.