These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 8798103)
1. Role of basal release of nitric oxide in the presence of acute left ventricular dysfunction: comparative study with normal condition. Yamamoto K; Masuyama T; Mano T; Naito J; Kondo H; Nagano R; Hori M; Kamada T J Card Fail; 1996 Mar; 2(1):33-9. PubMed ID: 8798103 [TBL] [Abstract][Full Text] [Related]
2. Basal release of endothelium-derived nitric oxide plays an important role in the prevention of afterload mismatch in acute left ventricular dysfunction. Yamamoto K; Masuyama T; Mano T; Naito J; Kondo H; Nagano R; Tanouchi J; Hori M; Kamada T Angiology; 1995 Sep; 46(9):767-77. PubMed ID: 7661379 [TBL] [Abstract][Full Text] [Related]
3. Flow-mediated vasodilation of human epicardial coronary arteries: effect of inhibition of nitric oxide synthesis. Shiode N; Morishima N; Nakayama K; Yamagata T; Matsuura H; Kajiyama G J Am Coll Cardiol; 1996 Feb; 27(2):304-10. PubMed ID: 8557898 [TBL] [Abstract][Full Text] [Related]
4. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. Chu A; Chambers DE; Lin CC; Kuehl WD; Palmer RM; Moncada S; Cobb FR J Clin Invest; 1991 Jun; 87(6):1964-8. PubMed ID: 2040689 [TBL] [Abstract][Full Text] [Related]
5. Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries. Yao SK; Ober JC; Krishnaswami A; Ferguson JJ; Anderson HV; Golino P; Buja LM; Willerson JT Circulation; 1992 Oct; 86(4):1302-9. PubMed ID: 1394936 [TBL] [Abstract][Full Text] [Related]
6. Differential effects of nitric oxide synthase modulation on porcine systemic and pulmonary circulation in vivo. Dahm P; Thörne J; Zoucas E; Mårtensson L; Myhre E; Blomquist S Crit Care Med; 1997 Feb; 25(2):280-5. PubMed ID: 9034265 [TBL] [Abstract][Full Text] [Related]
7. Regional coronary haemodynamic effects of two inhibitors of nitric oxide synthesis in anaesthetized, open-chest dogs. Richard V; Berdeaux A; la Rochelle CD; Giudicelli JF Br J Pharmacol; 1991 Sep; 104(1):59-64. PubMed ID: 1786519 [TBL] [Abstract][Full Text] [Related]
8. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444 [TBL] [Abstract][Full Text] [Related]
9. Basal release of nitric oxide is decreased in the coronary circulation in patients with heart failure. Mohri M; Egashira K; Tagawa T; Kuga T; Tagawa H; Harasawa Y; Shimokawa H; Takeshita A Hypertension; 1997 Jul; 30(1 Pt 1):50-6. PubMed ID: 9231820 [TBL] [Abstract][Full Text] [Related]
10. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Lefroy DC; Crake T; Uren NG; Davies GJ; Maseri A Circulation; 1993 Jul; 88(1):43-54. PubMed ID: 8319355 [TBL] [Abstract][Full Text] [Related]
11. Influence of basal nitric oxide secretion on cardiac function in man. Clarkson PB; Lim PO; MacDonald TM Br J Clin Pharmacol; 1995 Oct; 40(4):299-305. PubMed ID: 8554930 [TBL] [Abstract][Full Text] [Related]
12. Effects of inhibition of nitric oxide formation on regional blood flow in experimental myocardial infarction. Drexler H; Hablawetz E; Lu W; Riede U; Christes A Circulation; 1992 Jul; 86(1):255-62. PubMed ID: 1617777 [TBL] [Abstract][Full Text] [Related]
13. Importance of nitric oxide in canine femoral circulation: comparison of two NO inhibitors. Kirkebøen KA; Naess PA; Christensen G; Kiil F Cardiovasc Res; 1992 Apr; 26(4):357-61. PubMed ID: 1638567 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide production by coronary conductance and resistance vessels in hypercholesterolemia patients. Shiode N; Nakayama K; Morishima N; Yamagata T; Matsuura H; Kajiyama G Am Heart J; 1996 Jun; 131(6):1051-7. PubMed ID: 8644581 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of renal nitric oxide synthesis with NG-monomethyl-L-arginine and NG-nitro-L-arginine. Naess PA; Kirkebøen KA; Christensen G; Kiil F Am J Physiol; 1992 Jun; 262(6 Pt 2):F939-42. PubMed ID: 1535755 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Hare JM; Loh E; Creager MA; Colucci WS Circulation; 1995 Oct; 92(8):2198-203. PubMed ID: 7554202 [TBL] [Abstract][Full Text] [Related]
17. NG-monomethyl-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF- I: possible role of nitric oxide in muscle protein synthesis. Fryburg DA J Clin Invest; 1996 Mar; 97(5):1319-28. PubMed ID: 8636445 [TBL] [Abstract][Full Text] [Related]
18. Effects of inhibition of nitric oxide formation on the regulation of coronary blood flow in anesthetized dogs. Solzbach U; Liao J; Eigler NL; Zeiher AM Basic Res Cardiol; 1995; 90(6):489-97. PubMed ID: 8773194 [TBL] [Abstract][Full Text] [Related]
19. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Smits P; Williams SB; Lipson DE; Banitt P; Rongen GA; Creager MA Circulation; 1995 Oct; 92(8):2135-41. PubMed ID: 7554193 [TBL] [Abstract][Full Text] [Related]
20. Influence of basal release of nitric oxide on systolic and diastolic function of both ventricles. Mankad P; Yacoub M J Thorac Cardiovasc Surg; 1997 Apr; 113(4):770-6. PubMed ID: 9104987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]