These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 8798479)
1. In vitro enhancement of p38 mitogen-activated protein kinase activity by phosphorylated glia maturation factor. Lim R; Zaheer A J Biol Chem; 1996 Sep; 271(38):22953-6. PubMed ID: 8798479 [TBL] [Abstract][Full Text] [Related]
2. In vitro inhibition of MAP kinase (ERK1/ERK2) activity by phosphorylated glia maturation factor (GMF). Zaheer A; Lim R Biochemistry; 1996 May; 35(20):6283-8. PubMed ID: 8639570 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase A (PKA)- and protein kinase C-phosphorylated glia maturation factor promotes the catalytic activity of PKA. Zaheer A; Lim R J Biol Chem; 1997 Feb; 272(8):5183-6. PubMed ID: 9030586 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of glia maturation factor (GMF) in PC12 pheochromocytoma cells activates p38 MAP kinase, MAPKAP kinase-2, and tyrosine hydroxylase. Zaheer A; Lim R Biochem Biophys Res Commun; 1998 Sep; 250(2):278-82. PubMed ID: 9753620 [TBL] [Abstract][Full Text] [Related]
5. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. Deak M; Clifton AD; Lucocq LM; Alessi DR EMBO J; 1998 Aug; 17(15):4426-41. PubMed ID: 9687510 [TBL] [Abstract][Full Text] [Related]
6. Phorbol ester stimulates rapid intracellular phosphorylation of glia maturation factor. Lim R; Zaheer A Biochem Biophys Res Commun; 1995 Jun; 211(3):928-34. PubMed ID: 7598724 [TBL] [Abstract][Full Text] [Related]
7. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Nahas N; Molski TF; Fernandez GA; Sha'afi RI Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):247-53. PubMed ID: 8761479 [TBL] [Abstract][Full Text] [Related]
8. Participation of a stress-activated protein kinase cascade in the activation of tyrosine hydroxylase in chromaffin cells. Thomas G; Haavik J; Cohen P Eur J Biochem; 1997 Aug; 247(3):1180-9. PubMed ID: 9288946 [TBL] [Abstract][Full Text] [Related]
9. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Xia Z; Dickens M; Raingeaud J; Davis RJ; Greenberg ME Science; 1995 Nov; 270(5240):1326-31. PubMed ID: 7481820 [TBL] [Abstract][Full Text] [Related]
10. Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. Geng Y; Valbracht J; Lotz M J Clin Invest; 1996 Nov; 98(10):2425-30. PubMed ID: 8941662 [TBL] [Abstract][Full Text] [Related]
11. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. Waskiewicz AJ; Flynn A; Proud CG; Cooper JA EMBO J; 1997 Apr; 16(8):1909-20. PubMed ID: 9155017 [TBL] [Abstract][Full Text] [Related]
12. Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. Nguyen TT; Scimeca JC; Filloux C; Peraldi P; Carpentier JL; Van Obberghen E J Biol Chem; 1993 May; 268(13):9803-10. PubMed ID: 8387505 [TBL] [Abstract][Full Text] [Related]
13. Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Maizels ET; Mukherjee A; Sithanandam G; Peters CA; Cottom J; Mayo KE; Hunzicker-Dunn M Mol Endocrinol; 2001 May; 15(5):716-33. PubMed ID: 11328854 [TBL] [Abstract][Full Text] [Related]
14. Insulin activates p38 mitogen-activated protein (MAP) kinase via a MAP kinase kinase (MKK) 3/MKK 6 pathway in vascular smooth muscle cells. Igarashi M; Yamaguchi H; Hirata A; Daimon M; Tominaga M; Kato T Eur J Clin Invest; 2000 Aug; 30(8):668-77. PubMed ID: 10964158 [TBL] [Abstract][Full Text] [Related]
15. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. Lavoie JN; L'Allemain G; Brunet A; Müller R; Pouysségur J J Biol Chem; 1996 Aug; 271(34):20608-16. PubMed ID: 8702807 [TBL] [Abstract][Full Text] [Related]
16. Nerve growth factor-induced phosphorylation cascade in PC12 pheochromocytoma cells. Association of S6 kinase II with the microtubule-associated protein kinase, ERK1. Scimeca JC; Nguyen TT; Filloux C; Van Obberghen E J Biol Chem; 1992 Aug; 267(24):17369-74. PubMed ID: 1324933 [TBL] [Abstract][Full Text] [Related]
17. Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor. Sutherland CL; Heath AW; Pelech SL; Young PR; Gold MR J Immunol; 1996 Oct; 157(8):3381-90. PubMed ID: 8871635 [TBL] [Abstract][Full Text] [Related]
18. Basic fibroblast growth factor-induced activation of novel CREB kinase during the differentiation of immortalized hippocampal cells. Sung JY; Shin SW; Ahn YS; Chung KC J Biol Chem; 2001 Apr; 276(17):13858-66. PubMed ID: 11278709 [TBL] [Abstract][Full Text] [Related]
19. CCAAT/enhancer-binding protein and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. Kumar A; Knox AJ; Boriek AM J Biol Chem; 2003 May; 278(21):18868-76. PubMed ID: 12637525 [TBL] [Abstract][Full Text] [Related]
20. Fibroblast growth factor receptor signaling activates the human interstitial collagenase promoter via the bipartite Ets-AP1 element. Newberry EP; Willis D; Latifi T; Boudreaux JM; Towler DA Mol Endocrinol; 1997 Jul; 11(8):1129-44. PubMed ID: 9212060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]