BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8798503)

  • 1. Purification and characterization of a 43-kDa rotenone-insensitive NADH dehydrogenase from plant mitochondria.
    Menz RI; Day DA
    J Biol Chem; 1996 Sep; 271(38):23117-20. PubMed ID: 8798503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix NADH dehydrogenases of plant mitochondria and sites of quinone reduction by complex I.
    Menz RI; Griffith M; Day DA; Wiskich JT
    Eur J Biochem; 1992 Sep; 208(2):481-5. PubMed ID: 1521539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional molecular aspects of the NADH dehydrogenases of plant mitochondria.
    Soole KL; Menz RI
    J Bioenerg Biomembr; 1995 Aug; 27(4):397-406. PubMed ID: 8595975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei.
    Beattie DS; Howton MM
    Eur J Biochem; 1996 Nov; 241(3):888-94. PubMed ID: 8944779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria.
    Møller IM; Rasmusson AG; Fredlund KM
    J Bioenerg Biomembr; 1993 Aug; 25(4):377-84. PubMed ID: 8226719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Fang J; Beattie DS
    Mol Biochem Parasitol; 2002 Aug; 123(2):135-42. PubMed ID: 12270629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria.
    Rasmusson AG; Møller IM
    Eur J Biochem; 1991 Dec; 202(2):617-23. PubMed ID: 1722151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae.
    Velázquez I; Pardo JP
    Arch Biochem Biophys; 2001 May; 389(1):7-14. PubMed ID: 11370674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. -->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles.
    Galkin AS; Grivennikova VG; Vinogradov AD
    FEBS Lett; 1999 May; 451(2):157-61. PubMed ID: 10371157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone.
    De Jong AM; Albracht SP
    Eur J Biochem; 1994 Jun; 222(3):975-82. PubMed ID: 8026508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of the rotenone-insensitive NADH dehydrogenase of mitochondria from Arum maculatum.
    Cook ND; Cammack R
    Eur J Biochem; 1984 Jun; 141(3):573-7. PubMed ID: 6745260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADH oxidation drives respiratory Na+ transport in mitochondria from Yarrowia lipolytica.
    Lin PC; Puhar A; Steuber J
    Arch Microbiol; 2008 Oct; 190(4):471-80. PubMed ID: 18551278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intermembrane electron transport in the dynamics of high-amplitude swelling of rat liver mitochondria].
    Lemeshko VV; Shekh VE; Aleksenko TV
    Ukr Biokhim Zh (1978); 1995; 67(2):28-34. PubMed ID: 8592781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.