These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8798503)

  • 21. Partial Purification and Characterization of Complex I, NADH:Ubiquinone Reductase, from the Inner Membrane of Beetroot Mitochondria.
    Soole KL; Dry IB; Wiskich JT
    Plant Physiol; 1992 Feb; 98(2):588-94. PubMed ID: 16668682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of complex I, rotenone-sensitive NADH: ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei.
    Fang J; Wang Y; Beattie DS
    Eur J Biochem; 2001 May; 268(10):3075-82. PubMed ID: 11358527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
    Grivennikova VG; Kotlyar AB; Karliner JS; Cecchini G; Vinogradov AD
    Biochemistry; 2007 Sep; 46(38):10971-8. PubMed ID: 17760425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy-linked mitochondrial pyridine nucleotide transhydrogenase of adult Hymenolepis diminuta.
    Fioravanti CF; McKelvey JR; Reisig JM
    J Parasitol; 1992 Oct; 78(5):774-8. PubMed ID: 1403417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans.
    Kotlyar AB; Borovok N
    Eur J Biochem; 2002 Aug; 269(16):4020-4. PubMed ID: 12180978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that the blockade of mitochondrial respiration by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) involves binding at the same site as the respiratory inhibitor, rotenone.
    Krueger MJ; Singer TP; Casida JE; Ramsay RR
    Biochem Biophys Res Commun; 1990 May; 169(1):123-8. PubMed ID: 2350337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae.
    Djavadi FH; Moradi M; Djavadi-Ohaniance L
    Eur J Biochem; 1980 Jun; 107(2):501-4. PubMed ID: 6995121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The energy-linked transhydrogenase in rat liver in relation to the reductive carboxylation of 2-oxoglutarate.
    Wanders RJ; van Doorn HE; Tager JM
    Eur J Biochem; 1981 Jun; 116(3):609-14. PubMed ID: 6266828
    [No Abstract]   [Full Text] [Related]  

  • 29. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J; Wilkinson C; Gil L
    Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of NADH oxidation in human skeletal muscle mitochondria.
    Fischer JC; Ruitenbeek W; Trijbels JM; Veerkamp JH; Stadhouders AM; Sengers RC; Janssen AJ
    Clin Chim Acta; 1986 Mar; 155(3):263-73. PubMed ID: 3011316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris.
    Sabar M; De Paepe R; de Kouchkovsky Y
    Plant Physiol; 2000 Nov; 124(3):1239-50. PubMed ID: 11080300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae.
    de Vries S; Grivell LA
    Eur J Biochem; 1988 Sep; 176(2):377-84. PubMed ID: 3138118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NADH: ubiquinone oxidoreductase in obligate aerobic yeasts.
    Büschges R; Bahrenberg G; Zimmermann M; Wolf K
    Yeast; 1994 Apr; 10(4):475-9. PubMed ID: 7941733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes.
    Sauer LA; Chapman JC; Dauchy RT
    Endocrinology; 1994 Feb; 134(2):751-9. PubMed ID: 8299570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the proton-translocating NADH:ubiquinone oxidoreductases of mitochondria and Escherichia coli using the inhibitor 1,10-phenanthroline.
    Finel M; Majander A
    FEBS Lett; 1994 Feb; 339(1-2):142-6. PubMed ID: 8313963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.