These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 8798617)
1. Interaction of Escherichia coli RecA protein with LexA repressor. I. LexA repressor cleavage is competitive with binding of a secondary DNA molecule. Rehrauer WM; Lavery PE; Palmer EL; Singh RN; Kowalczykowski SC J Biol Chem; 1996 Sep; 271(39):23865-73. PubMed ID: 8798617 [TBL] [Abstract][Full Text] [Related]
2. Interaction of Escherichia coli RecA protein with LexA repressor. II. Inhibition of DNA strand exchange by the uncleavable LexA S119A repressor argues that recombination and SOS induction are competitive processes. Harmon FG; Rehrauer WM; Kowalczykowski SC J Biol Chem; 1996 Sep; 271(39):23874-83. PubMed ID: 8798618 [TBL] [Abstract][Full Text] [Related]
3. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells. Namsaraev EA; Baitin D; Bakhlanova IV; Alexseyev AA; Ogawa H; Lanzov VA Mol Microbiol; 1998 Feb; 27(4):727-38. PubMed ID: 9515699 [TBL] [Abstract][Full Text] [Related]
4. Biochemical basis of the constitutive repressor cleavage activity of recA730 protein. A comparison to recA441 and recA803 proteins. Lavery PE; Kowalczykowski SC J Biol Chem; 1992 Oct; 267(29):20648-58. PubMed ID: 1400384 [TBL] [Abstract][Full Text] [Related]
5. Biochemical properties of the Escherichia coli recA430 protein. Analysis of a mutation that affects the interaction of the ATP-recA protein complex with single-stranded DNA. Menetski JP; Kowalczykowski SC J Mol Biol; 1990 Feb; 211(4):845-55. PubMed ID: 2179566 [TBL] [Abstract][Full Text] [Related]
6. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. Kowalczykowski SC; Clow J; Somani R; Varghese A J Mol Biol; 1987 Jan; 193(1):81-95. PubMed ID: 3295259 [TBL] [Abstract][Full Text] [Related]
7. Biochemical characterization of a mutant RecA protein altered in DNA-binding loop 1. Mirshad JK; Kowalczykowski SC Biochemistry; 2003 May; 42(19):5945-54. PubMed ID: 12741853 [TBL] [Abstract][Full Text] [Related]
8. Stabilization of recA protein-ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli. Morrical SW; Cox MM Biochemistry; 1990 Jan; 29(3):837-43. PubMed ID: 2186808 [TBL] [Abstract][Full Text] [Related]
9. Two components of DNA replication-dependent LexA cleavage. Myka KK; Marians KJ J Biol Chem; 2020 Jul; 295(30):10368-10379. PubMed ID: 32513870 [TBL] [Abstract][Full Text] [Related]
10. Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis. Yasuda T; Morimatsu K; Kato R; Usukura J; Takahashi M; Ohmori H EMBO J; 2001 Mar; 20(5):1192-202. PubMed ID: 11230142 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence study of the RecA-dependent proteolysis of LexA, the repressor of the SOS system in Escherichia coli. Takahashi M; Daune M; Schnarr M FEBS Lett; 1986 Feb; 196(2):215-8. PubMed ID: 3512293 [TBL] [Abstract][Full Text] [Related]
12. Effects of overproduction of single-stranded DNA-binding protein on RecA protein-dependent processes in Escherichia coli. Moreau PL J Mol Biol; 1987 Apr; 194(4):621-34. PubMed ID: 3309327 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of the RecA protein from Streptococcus pneumoniae. Steffen SE; Bryant FR Arch Biochem Biophys; 2000 Oct; 382(2):303-9. PubMed ID: 11068882 [TBL] [Abstract][Full Text] [Related]
14. RecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Gruenig MC; Renzette N; Long E; Chitteni-Pattu S; Inman RB; Cox MM; Sandler SJ Mol Microbiol; 2008 Sep; 69(5):1165-79. PubMed ID: 18627467 [TBL] [Abstract][Full Text] [Related]
15. Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein. Fu H; Le S; Chen H; Muniyappa K; Yan J Nucleic Acids Res; 2013 Jan; 41(2):924-32. PubMed ID: 23221642 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA. Mustard JA; Little JW J Bacteriol; 2000 Mar; 182(6):1659-70. PubMed ID: 10692372 [TBL] [Abstract][Full Text] [Related]
17. On the in vivo function of the RecA ATPase. Campbell MJ; Davis RW J Mol Biol; 1999 Feb; 286(2):437-45. PubMed ID: 9973562 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of the RecA protein of Escherichia coli. Tyrosine 264 is required for efficient ATP hydrolysis and strand exchange but not for LexA repressor inactivation. Freitag NE; McEntee K J Biol Chem; 1991 Apr; 266(11):7058-66. PubMed ID: 2016315 [TBL] [Abstract][Full Text] [Related]
20. "Activated"-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins. Freitag N; McEntee K Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8363-7. PubMed ID: 2554312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]