These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 8798619)
1. Transcriptional pausing of RNA polymerase in the presence of guanosine tetraphosphate depends on the promoter and gene sequence. Krohn M; Wagner R J Biol Chem; 1996 Sep; 271(39):23884-94. PubMed ID: 8798619 [TBL] [Abstract][Full Text] [Related]
2. A direct effect of guanosine tetraphosphate on pausing of Escherichia coli RNA polymerase during RNA chain elongation. Kingston RE; Nierman WC; Chamberlin MJ J Biol Chem; 1981 Mar; 256(6):2787-97. PubMed ID: 7009598 [TBL] [Abstract][Full Text] [Related]
3. Conversion of active promoter-RNA polymerase complexes into inactive promoter bound complexes in E. coli by the transcription effector, ppGpp. Maitra A; Shulgina I; Hernandez VJ Mol Cell; 2005 Mar; 17(6):817-29. PubMed ID: 15780938 [TBL] [Abstract][Full Text] [Related]
4. Guanosine 3',5'-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. Heinemann M; Wagner R Eur J Biochem; 1997 Aug; 247(3):990-9. PubMed ID: 9288924 [TBL] [Abstract][Full Text] [Related]
5. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. Jöres L; Wagner R J Biol Chem; 2003 May; 278(19):16834-43. PubMed ID: 12621053 [TBL] [Abstract][Full Text] [Related]
6. A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response. Gummesson B; Lovmar M; Nyström T J Biol Chem; 2013 Jul; 288(29):21055-21064. PubMed ID: 23749992 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. Barker MM; Gaal T; Josaitis CA; Gourse RL J Mol Biol; 2001 Jan; 305(4):673-88. PubMed ID: 11162084 [TBL] [Abstract][Full Text] [Related]
8. Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing. Bremer H; Ehrenberg M Biochim Biophys Acta; 1995 May; 1262(1):15-36. PubMed ID: 7539631 [TBL] [Abstract][Full Text] [Related]
9. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Bernardo LM; Johansson LU; Solera D; Skärfstad E; Shingler V Mol Microbiol; 2006 May; 60(3):749-64. PubMed ID: 16629675 [TBL] [Abstract][Full Text] [Related]
10. Regulation of ribosomal RNA synthesis in E. coli: effects of the global regulator guanosine tetraphosphate (ppGpp). Wagner R J Mol Microbiol Biotechnol; 2002 May; 4(3):331-40. PubMed ID: 11931566 [TBL] [Abstract][Full Text] [Related]
11. Studies in vivo on Escherichia coli RNA polymerase mutants altered in the stringent response. Baracchini E; Glass R; Bremer H Mol Gen Genet; 1988 Aug; 213(2-3):379-87. PubMed ID: 2460732 [TBL] [Abstract][Full Text] [Related]
12. Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. Hernandez VJ; Bremer H J Biol Chem; 1993 May; 268(15):10851-62. PubMed ID: 7684368 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide effects on Sanchez-Vazquez P; Dewey CN; Kitten N; Ross W; Gourse RL Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8310-8319. PubMed ID: 30971496 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. Barker MM; Gaal T; Gourse RL J Mol Biol; 2001 Jan; 305(4):689-702. PubMed ID: 11162085 [TBL] [Abstract][Full Text] [Related]
15. Promoter selectivity of Escherichia coli RNA polymerase. Differential stringent control of the multiple promoters from ribosomal RNA and protein operons. Kajitani M; Ishihama A J Biol Chem; 1984 Feb; 259(3):1951-7. PubMed ID: 6363418 [TBL] [Abstract][Full Text] [Related]
16. Properties of Escherichia coli RNA polymerase from a strain devoid of the stringent response alarmone ppGpp. Szalewska-Pałasz A Acta Biochim Pol; 2008; 55(2):317-23. PubMed ID: 18560603 [TBL] [Abstract][Full Text] [Related]
17. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex. Doniselli N; Rodriguez-Aliaga P; Amidani D; Bardales JA; Bustamante C; Guerra DG; Rivetti C Nucleic Acids Res; 2015 May; 43(10):5249-62. PubMed ID: 25916853 [TBL] [Abstract][Full Text] [Related]
18. Kinetic properties of rrn promoters in Escherichia coli. Zhang X; Dennis P; Ehrenberg M; Bremer H Biochimie; 2002 Oct; 84(10):981-96. PubMed ID: 12504278 [TBL] [Abstract][Full Text] [Related]
19. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus. Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650 [TBL] [Abstract][Full Text] [Related]
20. Promoter-specific control of E. coli RNA polymerase by ppGpp and a general transcription factor. Roberts JW Genes Dev; 2009 Jan; 23(2):143-6. PubMed ID: 19171778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]