These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Multidrug resistance protein MRP1 reconstituted into lipid vesicles: secondary structure and nucleotide-induced tertiary structure changes. Manciu L; Chang XB; Riordan JR; Ruysschaert JM Biochemistry; 2000 Oct; 39(42):13026-33. PubMed ID: 11041868 [TBL] [Abstract][Full Text] [Related]
5. Fourier transform infrared spectroscopy study of the secondary and tertiary structure of the reconstituted Na+/Ca2+ exchanger 70-kDa polypeptide. Saba RI; Ruysschaert JM; Herchuelz A; Goormaghtigh E J Biol Chem; 1999 May; 274(22):15510-8. PubMed ID: 10336444 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional asymmetry of the nucleotide-binding domains of P-glycoprotein investigated by attenuated total reflection Fourier transform infrared spectroscopy. Vigano C; Julien M; Carrier I; Gros P; Ruysschaert JM J Biol Chem; 2002 Feb; 277(7):5008-16. PubMed ID: 11741934 [TBL] [Abstract][Full Text] [Related]
7. Secondary and tertiary structure changes of reconstituted LmrA induced by nucleotide binding or hydrolysis. A fourier transform attenuated total reflection infrared spectroscopy and tryptophan fluorescence quenching analysis. Vigano C; Margolles A; van Veen HW; Konings WN; Ruysschaert JM J Biol Chem; 2000 Apr; 275(15):10962-7. PubMed ID: 10753896 [TBL] [Abstract][Full Text] [Related]
8. Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly. Tombline G; Bartholomew LA; Urbatsch IL; Senior AE J Biol Chem; 2004 Jul; 279(30):31212-20. PubMed ID: 15159388 [TBL] [Abstract][Full Text] [Related]
9. Conformational changes of P-glycoprotein by nucleotide binding. Wang G; Pincheira R; Zhang M; Zhang JT Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):897-904. PubMed ID: 9396736 [TBL] [Abstract][Full Text] [Related]
10. Insights into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies. Sharom FJ; Liu R; Romsicki Y; Lu P Biochim Biophys Acta; 1999 Dec; 1461(2):327-45. PubMed ID: 10581365 [TBL] [Abstract][Full Text] [Related]
11. Monitoring of secondary and tertiary structure changes in the gastric H+/K+-ATPase by infrared spectroscopy. Scheirlinckx F; Buchet R; Ruysschaert JM; Goormaghtigh E Eur J Biochem; 2001 Jul; 268(13):3644-53. PubMed ID: 11432730 [TBL] [Abstract][Full Text] [Related]
12. Fourier transform infrared spectroscopy study of the secondary structure of the reconstituted Neurospora crassa plasma membrane H(+)-ATPase and of its membrane-associated proteolytic peptides. Vigneron L; Ruysschaert JM; Goormaghtigh E J Biol Chem; 1995 Jul; 270(30):17685-96. PubMed ID: 7629067 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation-induced conformational changes of cystic fibrosis transmembrane conductance regulator monitored by attenuated total reflection-Fourier transform IR spectroscopy and fluorescence spectroscopy. Grimard V; Li C; Ramjeesingh M; Bear CE; Goormaghtigh E; Ruysschaert JM J Biol Chem; 2004 Feb; 279(7):5528-36. PubMed ID: 14660584 [TBL] [Abstract][Full Text] [Related]
14. Study of amide-proton exchange of Escherichia coli melibiose permease by attenuated total reflection-Fourier transform infrared spectroscopy: evidence of structure modulation by substrate binding. Dave N; Lórenz-Fonfría VA; Villaverde J; Lemonnier R; Leblanc G; Padrós E J Biol Chem; 2002 Feb; 277(5):3380-7. PubMed ID: 11729178 [TBL] [Abstract][Full Text] [Related]
15. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Rothnie A; Theron D; Soceneantu L; Martin C; Traikia M; Berridge G; Higgins CF; Devaux PF; Callaghan R Eur Biophys J; 2001 Oct; 30(6):430-42. PubMed ID: 11718296 [TBL] [Abstract][Full Text] [Related]
16. Conformational changes of the 120-kDa Na+/Ca2+ exchanger protein upon ligand binding: a Fourier transform infrared spectroscopy study. Saba RI; Goormaghtigh E; Ruysschaert JM; Herchuelz A Biochemistry; 2001 Mar; 40(11):3324-32. PubMed ID: 11258952 [TBL] [Abstract][Full Text] [Related]
17. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. Sharom FJ; Yu X; Doige CA J Biol Chem; 1993 Nov; 268(32):24197-202. PubMed ID: 7901214 [TBL] [Abstract][Full Text] [Related]
18. Detection of structural and functional asymmetries in P-glycoprotein by combining mutagenesis and H/D exchange measurements. Vigano C; Goormaghtigh E; Ruysschaert JM Chem Phys Lipids; 2003 Jan; 122(1-2):121-35. PubMed ID: 12598043 [TBL] [Abstract][Full Text] [Related]
19. Purification and reconstitution of functional human P-glycoprotein. Ambudkar SV J Bioenerg Biomembr; 1995 Feb; 27(1):23-9. PubMed ID: 7629047 [TBL] [Abstract][Full Text] [Related]
20. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. Eytan GD; Regev R; Assaraf YG J Biol Chem; 1996 Feb; 271(6):3172-8. PubMed ID: 8621717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]