These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8798809)

  • 1. The effect of capillary blood flow on the oxygen release into rat heart tissue: model calculations with point-like sources representing the erythrocytes.
    Bos C; Hoofd L; Oostendorp T
    Adv Exp Med Biol; 1996; 388():177-83. PubMed ID: 8798809
    [No Abstract]   [Full Text] [Related]  

  • 2. Plasma mixing is likely to affect capillary oxygen transport in hard working rat heart.
    Bos C; Hoofd L; Oostendorp T; Oeseburg B
    Adv Exp Med Biol; 1996; 388():155-60. PubMed ID: 8798807
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of separate red blood cells on capillary tissue oxygenation calculated with a numerical model.
    Bos C; Hoofd L; Oostendorp T
    IMA J Math Appl Med Biol; 1996 Dec; 13(4):259-74. PubMed ID: 8968786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of flow redistributions on the calculated pO2 in rat heart tissue.
    Hoofd L; Turek Z
    Adv Exp Med Biol; 1994; 345():275-82. PubMed ID: 8079719
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of blood flow on oxygen extraction pressures calculated in a model of pointlike erythrocyte sources for rat heart.
    Hoofd L; Bos C; Oostendorp T
    Math Biosci; 1996 Jan; 131(1):23-49. PubMed ID: 8589537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical analysis of oxygen concentration in a two dimensional array of capillaries.
    Salathe EP
    J Math Biol; 2003 Apr; 46(4):287-308. PubMed ID: 12673508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is red cell flow heterogeneity a critical variable in the regulation and limitation of oxygen transport to tissue?
    Duling BR
    Adv Exp Med Biol; 1994; 361():237-47. PubMed ID: 7597947
    [No Abstract]   [Full Text] [Related]  

  • 8. Mathematical model of erythrocytes as point-like sources.
    Bos C; Hoofd L; Oostendorp T
    Math Biosci; 1995 Feb; 125(2):165-89. PubMed ID: 7881193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of local regulation of blood flow by veno-arterial diffusion of vasoactive metabolites.
    Kopyltsov AV; Groebe K
    Adv Exp Med Biol; 1997; 411():303-11. PubMed ID: 9269441
    [No Abstract]   [Full Text] [Related]  

  • 10. Classical Krogh model does not apply well to coronary oxygen exchange.
    Van der Ploeg CP; Dankelman J; Spaan JA
    Adv Exp Med Biol; 1994; 345():299-304. PubMed ID: 8079722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Flow Versus Hematocrit in Optimization of Oxygen Transfer to Tissue During Fluid Resuscitation.
    Siam J; Kadan M; Flaishon R; Barnea O
    Cardiovasc Eng Technol; 2015 Dec; 6(4):474-84. PubMed ID: 26577480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction pressures calculated for rat heart and dog skeletal muscle and application in models of tissue oxygenation.
    Hoofd L; Bos C
    Adv Exp Med Biol; 1997; 428():679-85. PubMed ID: 9500115
    [No Abstract]   [Full Text] [Related]  

  • 13. [Oxygen tension in cardiac tissue and its consumption by the myocardium].
    Aliukhin IuS; Vovenko EP
    Fiziol Zh SSSR Im I M Sechenova; 1990 Apr; 76(4):480-5. PubMed ID: 2170176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling erythrocytes as point-like O2 sources in a Kroghian cylinder model.
    Hoofd L; Bos C; Turek Z
    Adv Exp Med Biol; 1994; 345():893-900. PubMed ID: 8079803
    [No Abstract]   [Full Text] [Related]  

  • 15. In response to "Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise".
    Egginton S
    J Appl Physiol (1985); 2008 Mar; 104(3):896. PubMed ID: 18453030
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of oxygen consumption by measuring method on PO2 transients associated with the passage of erythrocytes in capillaries of rat mesentery.
    Tsai AG; Cabrales P; Johnson PC; Intaglietta M; Golub AS; Pittman RN
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1777; author reply H1778-9. PubMed ID: 16162870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Last word on Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise.
    Poole D; Brown M; Hudlicka O
    J Appl Physiol (1985); 2008 Mar; 104(3):901. PubMed ID: 18326878
    [No Abstract]   [Full Text] [Related]  

  • 18. Last word on Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise.
    Clark M; Rattigan S; Barrett E; Vincent M
    J Appl Physiol (1985); 2008 Mar; 104(3):900. PubMed ID: 18326877
    [No Abstract]   [Full Text] [Related]  

  • 19. Point: There is capillary recruitment in active skeletal muscle during exercise.
    Clark MG; Rattigan S; Barrett EJ; Vincent MA
    J Appl Physiol (1985); 2008 Mar; 104(3):889-91. PubMed ID: 17656624
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of blood flow on gas transport in a pulmonary capillary.
    Merrikh AA; Lage JL
    J Biomech Eng; 2005 Jun; 127(3):432-9. PubMed ID: 16060349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.