These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8798828)

  • 21. Hypoxic vasodilation does not require nitric oxide (EDRF/NO) synthesis.
    Vallet B; Curtis SE; Winn MJ; King CE; Chapler CK; Cain SM
    J Appl Physiol (1985); 1994 Mar; 76(3):1256-61. PubMed ID: 8005870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sirolimus causes relaxation of human vascular smooth muscle: a novel action of sirolimus mediated via ATP-sensitive potassium channels.
    Ghatta S; Tunstall RR; Kareem S; Rahman M; O'Rourke ST
    J Pharmacol Exp Ther; 2007 Mar; 320(3):1204-8. PubMed ID: 17164473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. KATP channels in vascular smooth muscle.
    Quayle JM; Standen NB
    Cardiovasc Res; 1994 Jun; 28(6):797-804. PubMed ID: 7923282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vasorelaxant effects of Brillantaisia nitens Lindau (Acanthaceae) extracts on isolated rat vascular smooth muscle.
    Dimo T; Mtopi OS; Nguelefack TB; Kamtchouing P; Zapfack L; Asongalem EA; Dongo E
    J Ethnopharmacol; 2007 Apr; 111(1):104-9. PubMed ID: 17250985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery.
    Dart C; Standen NB
    J Physiol; 1995 Feb; 483 ( Pt 1)(Pt 1):29-39. PubMed ID: 7539841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for a glibenclamide-sensitive, relatively ATP-insensitive K+ current in regulating membrane potential and current in rat aorta.
    Mishra SK; Aaronson PI
    Cardiovasc Res; 1999 Nov; 44(2):429-35. PubMed ID: 10690319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protective effects of anesthetics on vascular function related to K⁺ channels.
    Kawahito S; Nakahata K; Azma T; Kuroda Y; Cook DJ; Kinoshita H
    Curr Pharm Des; 2014; 20(36):5727-37. PubMed ID: 24502572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of blockade of the ATP-sensitive potassium channel on metabolic coronary vasodilation in the dog.
    Aversano T; Ouyang P; Silverman H; Ziegelstein RC; Gips S
    Pharmacology; 1993 Dec; 47(6):360-8. PubMed ID: 8278458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of endotoxin on canine skeletal muscle oxygen delivery-uptake relations during progressive hypoxic hypoxia.
    Curtis SE; Bradley WE; Cain SM
    Adv Exp Med Biol; 1992; 317():751-7. PubMed ID: 1288200
    [No Abstract]   [Full Text] [Related]  

  • 30. Inhibitor of ATP-sensitive K+ channel alters neither hypoxic contraction nor relaxation of rat aorta.
    Rodman DM; Hasunuma K; Peach JL; McMurtry IF
    Blood Vessels; 1990; 27(6):365-8. PubMed ID: 2126471
    [No Abstract]   [Full Text] [Related]  

  • 31. Role of K+ATP channels and EDRF in reactive hyperemia in the hindquarters vascular bed of cats.
    Minkes RK; Santiago JA; McMahon TJ; Kadowitz PJ
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1704-12. PubMed ID: 7503268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of ATP-dependent potassium channels in pulmonary vascular tone of fetal lambs with congenital diaphragmatic hernia.
    de Buys Roessingh AS; de Lagausie P; Barbet JP; Mercier JC; Aigrain Y; Dinh-Xuan AT
    Pediatr Res; 2006 Nov; 60(5):537-42. PubMed ID: 16988185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ATP-sensitive potassium channel inhibition on coronary metabolic vasodilation in humans.
    Farouque HM; Worthley SG; Meredith IT
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):905-10. PubMed ID: 15016638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of K(ATP)(+) channels and adenosine in the control of coronary blood flow during exercise.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    J Appl Physiol (1985); 2000 Aug; 89(2):529-36. PubMed ID: 10926635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.
    Traverse JH; Chen Y; Hou M; Li Y; Bache RJ
    Circ Res; 2007 Jun; 100(11):1643-9. PubMed ID: 17478726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnesium increases iberiotoxin-sensitive large conductance calcium activated potassium currents on the basilar artery smooth muscle cells in rabbits.
    Dhungel KU; Kim TW; Sharma N; Bhattarai JP; Park SA; Han SK; Kim CJ
    Neurol Res; 2012 Jan; 34(1):11-6. PubMed ID: 22196856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium channels modulate hypoxic pulmonary vasoconstriction.
    Barman SA
    Am J Physiol; 1998 Jul; 275(1):L64-70. PubMed ID: 9688936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP-sensitive potassium channels in the cerebral circulation.
    Rosenblum WI
    Stroke; 2003 Jun; 34(6):1547-52. PubMed ID: 12714709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vasodilative response to hypoxia and simulated ischemia is mediated by ATP-sensitive K+ channels in guinea pig thoracic aorta.
    Gasser R; Klein W; Kickenweiz E
    Angiology; 1993 Mar; 44(3):228-43. PubMed ID: 8442533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute systemic hypoxia elevates venous but not interstitial potassium of dog skeletal muscle.
    Mo FM; Ballard HJ
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1710-8. PubMed ID: 15894574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.