BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8799505)

  • 1. Water, solute and protein diffusion in physiologically responsive hydrogels of poly (methacrylic acid-g-ethylene glycol).
    Bell CL; Peppas NA
    Biomaterials; 1996 Jun; 17(12):1203-18. PubMed ID: 8799505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swelling/syneresis phenomena in gel-forming interpolymer complexes.
    Bell CL; Peppas NA
    J Biomater Sci Polym Ed; 1996; 7(8):671-83. PubMed ID: 8639476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute transport analysis in pH-responsive, complexing hydrogels of poly(methacrylic acid-g-ethylene glycol).
    Lowman AM; Peppas NA
    J Biomater Sci Polym Ed; 1999; 10(9):999-1009. PubMed ID: 10574613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition.
    Madsen F; Peppas NA
    Biomaterials; 1999 Sep; 20(18):1701-8. PubMed ID: 10503971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery.
    Luo Y; Zhang K; Wei Q; Liu Z; Chen Y
    Acta Biomater; 2009 Jan; 5(1):316-27. PubMed ID: 18723415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides.
    Zhang K; Wu XY
    Biomaterials; 2004 Oct; 25(22):5281-91. PubMed ID: 15110479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of poly(MAA-g-EG) hydrogel nanoparticles by a thermally-initiated free radical dispersion polymerization.
    Deng L; He X; Li A; Yang Q; Dong A
    J Nanosci Nanotechnol; 2007 Feb; 7(2):626-33. PubMed ID: 17450805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P(AAm-co-MAA) semi-IPN hybrid hydrogels in the presence of PANI and MWNTs-COOH: improved swelling behavior and mechanical properties.
    Liu Z; Luo Y; Zhang K
    J Biomater Sci Polym Ed; 2008; 19(11):1503-20. PubMed ID: 18973726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery.
    Wood KM; Stone GM; Peppas NA
    Biomacromolecules; 2008 Apr; 9(4):1293-8. PubMed ID: 18330990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels. Effect of swelling medium and synthesis conditions.
    Mathur AM; Hammonds KF; Klier J; Scranton AB
    J Control Release; 1998 Jul; 54(2):177-84. PubMed ID: 9724904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Student Award for Outstanding Research Winner in the Undergraduate Category for the 2017 Society for Biomaterials Annual Meeting and Exposition, April 5-8, 2017, Minneapolis, Minnesota: Development and characterization of stimuli-responsive hydrogel microcarriers for oral protein delivery.
    O'Connor C; Steichen S; Peppas NA
    J Biomed Mater Res A; 2017 May; 105(5):1243-1251. PubMed ID: 28177593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a P((MAA-co-NVP)-g-EG) Hydrogel Platform for Oral Protein Delivery: Effects of Hydrogel Composition on Environmental Response and Protein Partitioning.
    Steichen S; O'Connor C; Peppas NA
    Macromol Biosci; 2017 Jan; 17(1):. PubMed ID: 27689827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Delivery of Hydrophobic Therapeutic Agents.
    Schoener CA; Hutson HN; Peppas NA
    Polym Int; 2012 Jun; 61(6):874-879. PubMed ID: 23087546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-dependent swelling and solute diffusion characteristics of poly(hydroxyethyl methacrylate-co-methacrylic acid) hydrogels.
    Kou JH; Amidon GL; Lee PI
    Pharm Res; 1988 Sep; 5(9):592-7. PubMed ID: 3247322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers.
    Ichikawa H; Peppas NA
    J Biomed Mater Res A; 2003 Nov; 67(2):609-17. PubMed ID: 14566804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release behaviour and biocompatibility of drug-loaded pH sensitive particles.
    Sipahigil O; Gürsoy A; Cakalağaoğlu F; Okar I
    Int J Pharm; 2006 Mar; 311(1-2):130-8. PubMed ID: 16427223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs.
    Sousa RG; Prior-Cabanillas A; Quijada-Garrido I; Barrales-Rienda JM
    J Control Release; 2005 Feb; 102(3):595-606. PubMed ID: 15681082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives.
    Bartil T; Bounekhel M; Cedric C; Jeerome R
    Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles.
    López JE; Peppas NA
    Drug Dev Ind Pharm; 2004 May; 30(5):497-504. PubMed ID: 15244085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.