These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8799534)

  • 1. Removed shunt valves: reasons for failure and implications for valve design.
    Brydon HL; Bayston R; Hayward R; Harkness W
    Br J Neurosurg; 1996 Jun; 10(3):245-51. PubMed ID: 8799534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus.
    Drake JM; Kestle JR; Milner R; Cinalli G; Boop F; Piatt J; Haines S; Schiff SJ; Cochrane DD; Steinbok P; MacNeil N
    Neurosurgery; 1998 Aug; 43(2):294-303; discussion 303-5. PubMed ID: 9696082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the distal double-slit valve system in children with hydrocephalus.
    Hahn YS
    Childs Nerv Syst; 1994 Mar; 10(2):99-103. PubMed ID: 8033170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The treatment of infantile hydrocephalus: "differential-pressure" or "flow-control" valves. A pilot study.
    Jain H; Sgouros S; Walsh AR; Hockley AD
    Childs Nerv Syst; 2000 Apr; 16(4):242-6. PubMed ID: 10855523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explanted shunt valves: factors contributing to their failure.
    Brydon HL; Bayston R; Hayward RD; Harkness WF
    Eur J Pediatr Surg; 1994 Dec; 4 Suppl 1():37-8. PubMed ID: 7766553
    [No Abstract]   [Full Text] [Related]  

  • 7. Shunt failure caused by valve collapse.
    Lundar T; Langmoen IA; Hovind KH
    J Neurol Neurosurg Psychiatry; 1991 Jun; 54(6):559-60. PubMed ID: 1880522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus.
    Rohde V; Mayfrank L; Ramakers VT; Gilsbach JM
    Acta Neurochir (Wien); 1998; 140(11):1127-34. PubMed ID: 9870057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term survival rates of gravity-assisted, adjustable differential pressure valves in infants with hydrocephalus.
    Gebert AF; Schulz M; Schwarz K; Thomale UW
    J Neurosurg Pediatr; 2016 May; 17(5):544-51. PubMed ID: 26799410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14-year institutional experience.
    Piatt JH; Carlson CV
    Pediatr Neurosurg; 1993; 19(5):233-41; discussion 242. PubMed ID: 8398847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group.
    Drake JM; Kestle J
    Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of structural degradation of cerebrospinal fluid shunt valves performed using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Sgouros S; Dipple SJ
    J Neurosurg; 2004 Mar; 100(3):534-40. PubMed ID: 15035291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The delta valve: how does its clinical performance compare with two other pressure differential valves without antisiphon control?
    Davis SE; Levy ML; McComb JG; Sposto R
    Pediatr Neurosurg; 2000 Aug; 33(2):58-63. PubMed ID: 11070430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gravity-assisted Paedi-Gav valve in the treatment of pediatric hydrocephalus.
    Meling TR; Egge A; Due-Tønnessen B
    Pediatr Neurosurg; 2005; 41(1):8-14. PubMed ID: 15886507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Millipore analysis of valvular fluid in sterile valve malfunctions.
    Traynelis VC; Willison CD; Follett KA; Chambers J; Schochet SS; Kaufman HH
    Neurosurgery; 1991 Jun; 28(6):848-52. PubMed ID: 2067607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study.
    Gruber RW; Roehrig B
    J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the cerebrospinal fluid protein concentration increase the risk of shunt complications?
    Brydon HL; Hayward R; Harkness W; Bayston R
    Br J Neurosurg; 1996 Jun; 10(3):267-73. PubMed ID: 8799537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More malfunctioning Medos Hakim programmable valves: cause for concern?
    Mauer UM; Kunz U
    J Neurosurg; 2011 Nov; 115(5):1047-52. PubMed ID: 21740121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.