These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8799534)

  • 21. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting.
    Kehler U; Kiefer M; Eymann R; Wagner W; Tschan CA; Langer N; Rohde V; Ludwig HC; Gliemroth J; Meier U; Lemcke J; Thomale UW; Fritsch M; Krauss JK; Mirzayan MJ; Schuhmann M; Huthmann A
    Clin Neurol Neurosurg; 2015 Oct; 137():132-6. PubMed ID: 26196478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 1998 Feb; 42(2):327-33; discussion 333-4. PubMed ID: 9482183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
    Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S
    Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical complications in shunts.
    Sainte-Rose C; Piatt JH; Renier D; Pierre-Kahn A; Hirsch JF; Hoffman HJ; Humphreys RP; Hendrick EB
    Pediatr Neurosurg; 1991-1992; 17(1):2-9. PubMed ID: 1811706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shunting with gravitational valves--can adjustments end the era of revisions for overdrainage-related events?: clinical article.
    Freimann FB; Sprung C
    J Neurosurg; 2012 Dec; 117(6):1197-204. PubMed ID: 22998061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Useful components of the shunt tap test for evaluation of shunt malfunction.
    Sood S; Kim S; Ham SD; Canady AI; Greninger N
    Childs Nerv Syst; 1993 Jun; 9(3):157-61; discussion 162. PubMed ID: 8374920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Standardization of cerebrospinal fluid shunt valves in pediatric hydrocephalus: an analysis of cost, operative time, length of stay, and shunt failure.
    Berns J; Priddy B; Belal A; Seibold RD; Zieles K; Jea A
    J Neurosurg Pediatr; 2021 Apr; 27(4):400-405. PubMed ID: 33513571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shunt malfunctions.
    Lo P; Drake JM
    Neurosurg Clin N Am; 2001 Oct; 12(4):695-701, viii. PubMed ID: 11524290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial.
    Drake JM; Kestle JT
    Neurosurgery; 1998 Nov; 43(5):1259-60. PubMed ID: 9802875
    [No Abstract]   [Full Text] [Related]  

  • 31. Experience with the Strata valve in the management of shunt overdrainage.
    Kondageski C; Thompson D; Reynolds M; Hayward RD
    J Neurosurg; 2007 Feb; 106(2 Suppl):95-102. PubMed ID: 17330533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disconnection as a cause of ventriculoperitoneal shunt malfunction in multicomponent shunt systems.
    Aldrich EF; Harmann P
    Pediatr Neurosurg; 1990-1991; 16(6):309-11; discussion 312. PubMed ID: 2134742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus.
    Tuli S; O'Hayon B; Drake J; Clarke M; Kestle J
    Neurosurgery; 1999 Dec; 45(6):1329-33; discussion 1333-5. PubMed ID: 10598700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pumping the shunt revisited. A longitudinal study.
    Piatt JH
    Pediatr Neurosurg; 1996 Aug; 25(2):73-6; discussion 76-7. PubMed ID: 9075250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature.
    Nowak S; Mehdorn HM; Stark A
    Clin Neurol Neurosurg; 2018 Oct; 173():154-158. PubMed ID: 30142621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency and causes of shunt revisions in different cerebrospinal fluid shunt types.
    Borgbjerg BM; Gjerris F; Albeck MJ; Hauerberg J; Børgesen SE
    Acta Neurochir (Wien); 1995; 136(3-4):189-94. PubMed ID: 8748853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new ventricular catheter for the prevention and treatment of proximal obstruction in cerebrospinal fluid shunts.
    Ventureyra EC; Higgins MJ
    Neurosurgery; 1994 May; 34(5):924-6; discussion 926. PubMed ID: 8052397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus.
    McGirt MJ; Buck DW; Sciubba D; Woodworth GF; Carson B; Weingart J; Jallo G
    Childs Nerv Syst; 2007 Mar; 23(3):289-95. PubMed ID: 17106749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.