These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 8799859)
1. Increases in cyclic 3', 5'-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. Ewer J; Truman JW J Comp Neurol; 1996 Jul; 370(3):330-41. PubMed ID: 8799859 [TBL] [Abstract][Full Text] [Related]
2. Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta. Gammie SC; Truman JW J Neurosci; 1997 Jun; 17(11):4389-97. PubMed ID: 9151755 [TBL] [Abstract][Full Text] [Related]
3. Invariant association of ecdysis with increases in cyclic 3',5'-guanosine monophosphate immunoreactivity in a small network of peptidergic neurons in the hornworm, Manduca sexta. Ewer J; Truman JW J Comp Physiol A; 1997 Oct; 181(4):319-30. PubMed ID: 9342855 [TBL] [Abstract][Full Text] [Related]
4. Different actions of ecdysis-triggering hormone on the brain and ventral nerve cord of the hornworm, Manduca sexta. Asuncion-Uchi M; El Shawa H; Martin T; Fuse M Gen Comp Endocrinol; 2010 Mar; 166(1):54-65. PubMed ID: 19699740 [TBL] [Abstract][Full Text] [Related]
5. Programmed cell death of identified peptidergic neurons involved in ecdysis behavior in the Moth, Manduca sexta. Ewer J; Wang CM; Klukas KA; Mesce KA; Truman JW; Fahrbach SE J Neurobiol; 1998 Nov; 37(2):265-80. PubMed ID: 9805272 [TBL] [Abstract][Full Text] [Related]
6. Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. Gammie SC; Truman JW J Exp Biol; 1999 Feb; 202(Pt 4):343-52. PubMed ID: 9914143 [TBL] [Abstract][Full Text] [Related]
7. Modulation of ecdysis in the moth Manduca sexta: the roles of the suboesophageal and thoracic ganglia. Fuse M; Truman JW J Exp Biol; 2002 Apr; 205(Pt 8):1047-58. PubMed ID: 11919264 [TBL] [Abstract][Full Text] [Related]
8. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster. Baker JD; McNabb SL; Truman JW J Exp Biol; 1999 Nov; 202(Pt 21):3037-48. PubMed ID: 10518485 [TBL] [Abstract][Full Text] [Related]
9. Novel mouse IgG-like immunoreactivity expressed by neurons in the moth Manduca sexta: developmental regulation and colocalization with crustacean cardioactive peptide. Klukas KA; Brelje TC; Mesce KA Microsc Res Tech; 1996 Oct; 35(3):242-64. PubMed ID: 8956273 [TBL] [Abstract][Full Text] [Related]
10. Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Park JH; Schroeder AJ; Helfrich-Förster C; Jackson FR; Ewer J Development; 2003 Jun; 130(12):2645-56. PubMed ID: 12736209 [TBL] [Abstract][Full Text] [Related]
11. Identification, sequence and expression of a crustacean cardioactive peptide (CCAP) gene in the moth Manduca sexta. Loi PK; Emmal SA; Park Y; Tublitz NJ J Exp Biol; 2001 Aug; 204(Pt 16):2803-16. PubMed ID: 11683436 [TBL] [Abstract][Full Text] [Related]
12. Neuropeptide-stimulated cyclic guanosine monophosphate immunoreactivity in the neurosecretory terminals of a neurohemal organ. Morton DB J Neurobiol; 1996 Mar; 29(3):341-53. PubMed ID: 8907163 [TBL] [Abstract][Full Text] [Related]
13. Identification, developmental expression, and functions of bursicon in the tobacco hawkmoth, Manduca sexta. Dai L; Dewey EM; Zitnan D; Luo CW; Honegger HW; Adams ME J Comp Neurol; 2008 Feb; 506(5):759-74. PubMed ID: 18076057 [TBL] [Abstract][Full Text] [Related]
14. Excitatory and inhibitory roles of central ganglia in initiation of the insect ecdysis behavioural sequence. Zitnan D; Adams ME J Exp Biol; 2000 Apr; 203(Pt 8):1329-40. PubMed ID: 10729281 [TBL] [Abstract][Full Text] [Related]
15. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Kim YJ; Zitnan D; Galizia CG; Cho KH; Adams ME Curr Biol; 2006 Jul; 16(14):1395-407. PubMed ID: 16860738 [TBL] [Abstract][Full Text] [Related]
16. Central peptidergic ensembles associated with organization of an innate behavior. Kim YJ; Zitnan D; Cho KH; Schooley DA; Mizoguchi A; Adams ME Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14211-6. PubMed ID: 16968777 [TBL] [Abstract][Full Text] [Related]
17. Temporally tuned neuronal differentiation supports the functional remodeling of a neuronal network in Drosophila. Veverytsa L; Allan DW Proc Natl Acad Sci U S A; 2012 Mar; 109(13):E748-56. PubMed ID: 22393011 [TBL] [Abstract][Full Text] [Related]
18. Crustacean cardioactive peptide (CCAP) of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae): Molecular characterization, distribution and its potential roles in larva-pupa ecdysis. Shi Y; Liu TY; Pei YX; Jiang HB; Dou W; Smagghe G; Wang JJ Peptides; 2019 Dec; 122():169929. PubMed ID: 29477306 [TBL] [Abstract][Full Text] [Related]
19. Neuropeptide induction of cyclic GMP increases in the insect CNS: resolution at the level of single identifiable neurons. Ewer J; De Vente J; Truman JW J Neurosci; 1994 Dec; 14(12):7704-12. PubMed ID: 7996205 [TBL] [Abstract][Full Text] [Related]
20. Circadian regulation of the lark RNA-binding protein within identifiable neurosecretory cells. Zhang X; McNeil GP; Hilderbrand-Chae MJ; Franklin TM; Schroeder AJ; Jackson FR J Neurobiol; 2000 Oct; 45(1):14-29. PubMed ID: 10992253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]