These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8800203)

  • 1. Radiation-modifying effect of oxygen in synchronized cells pre-treated with acute or prolonged hypoxia.
    Pettersen EO; Wang H
    Int J Radiat Biol; 1996 Sep; 70(3):319-26. PubMed ID: 8800203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival of synchronized human NHIK 3025 cells irradiated aerobically following a prolonged treatment with extremely hypoxic conditions.
    Koritzinsky M; Furre T; Amellem O; Pettersen EO
    Int J Radiat Biol; 1998 Oct; 74(4):491-500. PubMed ID: 9798960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle progression in human cells following re-oxygenation after extreme hypoxia: consequences concerning initiation of DNA synthesis.
    Amellem O; Pettersen EO
    Cell Prolif; 1993 Jan; 26(1):25-35. PubMed ID: 8439587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A change in the oxygen effect throughout the cell-cycle of human cells of the line NHIK 3025 cultivated in vitro.
    Pettersen EO; Christensen T; Bakke O; Oftebro R
    Int J Radiat Biol Relat Stud Phys Chem Med; 1977 Feb; 31(2):171-84. PubMed ID: 300721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of cell-cycle progression by acute treatment with various degrees of hypoxia: modifications induced by low concentrations of misonidazole present during hypoxia.
    Pettersen EO; Lindmo T
    Br J Cancer; 1983 Dec; 48(6):809-17. PubMed ID: 6652020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of protein accumulation on the kinetics of entry into S phase following extreme hypoxia.
    Amellem O; Pettersen EO
    Anticancer Res; 1991; 11(3):1083-7. PubMed ID: 1888142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress.
    Amellem O; Stokke T; Sandvik JA; Pettersen EO
    Exp Cell Res; 1996 Aug; 227(1):106-15. PubMed ID: 8806457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle progression and radiation survival following prolonged hypoxia and re-oxygenation.
    Koritzinsky M; Wouters BG; Amellem O; Pettersen EO
    Int J Radiat Biol; 2001 Mar; 77(3):319-28. PubMed ID: 11258846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage.
    Amellem O; Pettersen EO
    Cell Prolif; 1991 Mar; 24(2):127-41. PubMed ID: 2009318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased radiosensitivity with chronic hypoxia in four human tumor cell lines.
    Zölzer F; Streffer C
    Int J Radiat Oncol Biol Phys; 2002 Nov; 54(3):910-20. PubMed ID: 12377345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cell proliferation under extreme and moderate hypoxia: the role of pyrimidine (deoxy)nucleotides.
    Amellem O; Löffler M; Pettersen EO
    Br J Cancer; 1994 Nov; 70(5):857-66. PubMed ID: 7947090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation sensitizing effect of diamide on human cells cultivated in vitro.
    Pettersen EO; Oftebro R; Brustad T
    Acta Radiol Ther Phys Biol; 1976 Dec; 15(6):551-9. PubMed ID: 1031558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of potentially lethal radiation damage in human squamous carcinoma cells after chronic hypoxia.
    Kwok TT; Sutherland RM
    Int J Radiat Oncol Biol Phys; 1994 May; 29(2):255-8. PubMed ID: 8195016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters.
    Carlson DJ; Stewart RD; Semenenko VA
    Med Phys; 2006 Sep; 33(9):3105-15. PubMed ID: 17022202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The radiation response of cells recovering after chronic hypoxia.
    Kwok TT; Sutherland RM
    Radiat Res; 1989 Aug; 119(2):261-7. PubMed ID: 2756117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-associated proteins in human cells cultivated in vitro: lack of association with hypoxia-induced cell cycle regulation.
    Shi Y; Amellem O; Pettersen EO
    APMIS; 1993 Jan; 101(1):75-82. PubMed ID: 8457329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiosensitization in multifraction schedules. II. Greater sensitization by 2-nitroimidazoles than by oxygen.
    Taylor YC; Brown JM
    Radiat Res; 1987 Oct; 112(1):134-45. PubMed ID: 3659294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation.
    Klein C; Dokic I; Mairani A; Mein S; Brons S; Häring P; Haberer T; Jäkel O; Zimmermann A; Zenke F; Blaukat A; Debus J; Abdollahi A
    Radiat Oncol; 2017 Dec; 12(1):208. PubMed ID: 29287602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-cycle-dependent recovery from heavy-ion damage in G1-phase cells.
    Blakely EA; Chang PY; Lommel L
    Radiat Res Suppl; 1985; 8():S145-57. PubMed ID: 3867080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced BAX overexpression and radiation killing of hypoxic glioblastoma cells.
    Chen JK; Hu LJ; Wang J; Lamborn KR; Kong EL; Deen DF
    Radiat Res; 2005 Jun; 163(6):644-53. PubMed ID: 15913396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.