These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8800352)

  • 1. Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart.
    Jalife J; Gray R
    Acta Physiol Scand; 1996 Jun; 157(2):123-31. PubMed ID: 8800352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart.
    Gray RA; Jalife J; Panfilov A; Baxter WT; Cabo C; Davidenko JM; Pertsov AM
    Circulation; 1995 May; 91(9):2454-69. PubMed ID: 7729033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation.
    Qu Z; Kil J; Xie F; Garfinkel A; Weiss JN
    Biophys J; 2000 Jun; 78(6):2761-75. PubMed ID: 10827961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart.
    Efimov IR; Sidorov V; Cheng Y; Wollenzier B
    J Cardiovasc Electrophysiol; 1999 Nov; 10(11):1452-62. PubMed ID: 10571365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization and the dynamical nature of ventricular fibrillation.
    Jalife J; Gray RA; Morley GE; Davidenko JM
    Chaos; 1998 Mar; 8(1):79-93. PubMed ID: 12779712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventricular fibrillation: mechanisms of initiation and maintenance.
    Jalife J
    Annu Rev Physiol; 2000; 62():25-50. PubMed ID: 10845083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study.
    Zimik S; Pandit R; Majumder R
    PLoS One; 2020; 15(3):e0230214. PubMed ID: 32168323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of ventricular fibrillation in the human heart: experiments and models.
    ten Tusscher KH; Mourad A; Nash MP; Clayton RH; Bradley CP; Paterson DJ; Hren R; Hayward M; Panfilov AV; Taggart P
    Exp Physiol; 2009 May; 94(5):553-62. PubMed ID: 19168541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fibrillation of the heart ventricles].
    Chernysh AM; Bogushevich MS
    Anesteziol Reanimatol; 1996; (5):89-92. PubMed ID: 9027266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological mechanisms for the initiation and maintenance of ventricular fibrillation in nonischemic rabbit hearts.
    Watanabe Y; Toda H; Uchida H
    Heart Vessels Suppl; 1987; 2():69-87. PubMed ID: 3449506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromechanical vortex filaments during cardiac fibrillation.
    Christoph J; Chebbok M; Richter C; Schröder-Schetelig J; Bittihn P; Stein S; Uzelac I; Fenton FH; Hasenfuß G; Gilmour RF; Luther S
    Nature; 2018 Mar; 555(7698):667-672. PubMed ID: 29466325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal organization in ventricular fibrillation.
    Jalife J
    Trends Cardiovasc Med; 1999 Jul; 9(5):119-27. PubMed ID: 10639726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filament Dynamics during Simulated Ventricular Fibrillation in a High-Resolution Rabbit Heart.
    Pathmanathan P; Gray RA
    Biomed Res Int; 2015; 2015():720575. PubMed ID: 26587544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal and abnormal excitation of cardiac muscle fibers, especially fibrillation.
    Sano T
    Jpn Circ J; 1967 Nov; 31(11):1550-5. PubMed ID: 5630872
    [No Abstract]   [Full Text] [Related]  

  • 15. Reentrant arrhythmias and their control in models of mammalian cardiac tissue.
    Biktashev VN; Holden AV
    J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakthrough waves during ventricular fibrillation depend on the degree of rotational anisotropy and the boundary conditions: a simulation study.
    Ashihara T; Namba T; Ikeda T; Ito M; Kinoshita M; Nakazawa K
    J Cardiovasc Electrophysiol; 2001 Mar; 12(3):312-22. PubMed ID: 11291805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal organization during cardiac fibrillation.
    Gray RA; Pertsov AM; Jalife J
    Nature; 1998 Mar; 392(6671):75-8. PubMed ID: 9510249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting patterns of epicardial potentials during ventricular fibrillation.
    Bayly PV; Johnson EE; Wolf PD; Smith WM; Ideker RE
    IEEE Trans Biomed Eng; 1995 Sep; 42(9):898-907. PubMed ID: 7558064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional computer model of the heart: fibrillation induced by extrastimulation.
    Thakor NV; Eisenman LN
    Comput Biomed Res; 1989 Dec; 22(6):532-45. PubMed ID: 2480204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The puzzle behind electrical chaos and sudden cardiac death in the structurally normal heart.
    Brugada P; Brugada J; Brugada R
    Eur Heart J; 1999 Mar; 20(6):401-2. PubMed ID: 10213342
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.