BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8800514)

  • 1. Fabrication of pliable biodegradable polymer foams to engineer soft tissues.
    Wake MC; Gupta PK; Mikos AG
    Cell Transplant; 1996; 5(4):465-73. PubMed ID: 8800514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    J Biomater Sci Polym Ed; 1995; 7(1):23-38. PubMed ID: 7662615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method.
    Oh SH; Kang SG; Kim ES; Cho SH; Lee JH
    Biomaterials; 2003 Oct; 24(22):4011-21. PubMed ID: 12834596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments.
    Penco M; Marcioni S; Ferruti P; D' Antone S; Deghenghi R
    Biomaterials; 1996 Aug; 17(16):1583-90. PubMed ID: 8842362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties.
    Rahman CV; Kuhn G; White LJ; Kirby GT; Varghese OP; McLaren JS; Cox HC; Rose FR; Müller R; Hilborn J; Shakesheff KM
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):648-55. PubMed ID: 23359448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative degradation study of biodegradable microspheres of poly(DL-lactide-co-glycolide) with poly(ethyleneglycol) derivates.
    Garcia JT; Fariña JB; Munguía O; Llabrés M
    J Microencapsul; 1999; 16(1):83-94. PubMed ID: 9972505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition.
    Kwon YM; Kim SW
    Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of transforming growth factor beta1 from biodegradable polymer microparticles.
    Lu L; Stamatas GN; Mikos AG
    J Biomed Mater Res; 2000 Jun; 50(3):440-51. PubMed ID: 10737887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable synthetic polymer scaffolds for reinforcement of albumin protein solders used for laser-assisted tissue repair.
    Hoffman GT; Soller EC; McNally-Heintzelman KM
    Biomed Sci Instrum; 2002; 38():53-8. PubMed ID: 12085658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications.
    Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R
    J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic-
    Ogueri KS; Ogueri KS; McClinton A; Kan HM; Ude CC; Barajaa MA; Allcock HR; Laurencin CT
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1564-1572. PubMed ID: 33792283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.
    Kim HC; Lee H; Khetan J; Won YY
    Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function.
    Lu L; Yaszemski MJ; Mikos AG
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S82-91. PubMed ID: 11314800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.
    Murphy WL; Kohn DH; Mooney DJ
    J Biomed Mater Res; 2000 Apr; 50(1):50-8. PubMed ID: 10644963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.