These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 8801004)
1. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF 1. Podile AR; Prakash AP Can J Microbiol; 1996 Jun; 42(6):533-8. PubMed ID: 8801004 [TBL] [Abstract][Full Text] [Related]
2. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Manjula K; Podile AR Can J Microbiol; 2001 Jul; 47(7):618-25. PubMed ID: 11547881 [TBL] [Abstract][Full Text] [Related]
3. Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Manjula K; Kishore GK; Podile AR Can J Microbiol; 2004 Sep; 50(9):737-44. PubMed ID: 15644928 [TBL] [Abstract][Full Text] [Related]
4. Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Syed S; Tollamadugu NVKVP; Lian B Microbiol Res; 2020 Nov; 240():126562. PubMed ID: 32739583 [TBL] [Abstract][Full Text] [Related]
5. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Kishore GK; Pande S; Podile AR Can J Microbiol; 2005 Feb; 51(2):123-32. PubMed ID: 16091770 [TBL] [Abstract][Full Text] [Related]
6. Degradation of nicosulfuron by Bacillus subtilis YB1 and Aspergillus niger YF1. Lu XH; Kang ZH; Tao B; Wang YN; Dong JG; Zhang JL Prikl Biokhim Mikrobiol; 2012; 48(5):510-5. PubMed ID: 23101388 [TBL] [Abstract][Full Text] [Related]
7. Enhanced surface colonisation and competition during bacterial adaptation to a fungus. Richter A; Blei F; Hu G; Schwitalla JW; Lozano-Andrade CN; Xie J; Jarmusch SA; Wibowo M; Kjeldgaard B; Surabhi S; Xu X; Jautzus T; Phippen CBW; Tyc O; Arentshorst M; Wang Y; Garbeva P; Larsen TO; Ram AFJ; van den Hondel CAM; Maróti G; Kovács ÁT Nat Commun; 2024 May; 15(1):4486. PubMed ID: 38802389 [TBL] [Abstract][Full Text] [Related]
8. Potent Fungal Chitinase for the Bioconversion of Mycelial Waste. Liu T; Han H; Wang D; Guo X; Zhou Y; Fukamizo T; Yang Q J Agric Food Chem; 2020 May; 68(19):5384-5390. PubMed ID: 32275147 [No Abstract] [Full Text] [Related]
9. Biological control of postharvest fungal rot of yam (Dioscorea spp.) withBacillus subtilis. Okigbo RN Mycopathologia; 2005 Feb; 159(2):307-14. PubMed ID: 15770458 [TBL] [Abstract][Full Text] [Related]
10. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Chan YK; McCormick WA; Seifert KA Can J Microbiol; 2003 Apr; 49(4):253-62. PubMed ID: 12897834 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of some fungi and bacteria for biocontrol of anthracnose disease of cowpea. Adebanjo A; Bankole SA J Basic Microbiol; 2004; 44(1):3-9. PubMed ID: 14768021 [TBL] [Abstract][Full Text] [Related]
12. Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. van Munster JM; Nitsche BM; Krijgsheld P; van Wijk A; Dijkhuizen L; Wösten HA; Ram AF; van der Maarel MJEC Microbiology (Reading); 2013 Sep; 159(Pt 9):1853-1867. PubMed ID: 23832003 [TBL] [Abstract][Full Text] [Related]
13. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum. Sathishkumar Y; Velmurugan N; Lee HM; Rajagopal K; Im CK; Lee YS Antonie Van Leeuwenhoek; 2014 Aug; 106(2):197-209. PubMed ID: 24803238 [TBL] [Abstract][Full Text] [Related]
14. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. Chatterjee S; Kuang Y; Splivallo R; Chatterjee P; Karlovsky P BMC Microbiol; 2016 May; 16():83. PubMed ID: 27165654 [TBL] [Abstract][Full Text] [Related]
15. Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet). Cruz-Martín M; Mena E; Acosta-Suárez M; Pichardo T; Rodriguez E; Alvarado-Capó Y Braz J Microbiol; 2020 Mar; 51(1):265-269. PubMed ID: 31418142 [TBL] [Abstract][Full Text] [Related]
16. Effect of Spumol K on cell wall of Aspergillus niger strains characterized by different tolerance to toxic compounds of beet molasses. Gabara B; Zakowska Z Acta Microbiol Pol; 1997; 46(2):219-23. PubMed ID: 9429292 [TBL] [Abstract][Full Text] [Related]
17. Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Manjula K; Podile AR Indian J Exp Biol; 2005 Oct; 43(10):892-6. PubMed ID: 16235723 [TBL] [Abstract][Full Text] [Related]
18. The parasitism of the mould Penicillium purpurogenum on Aspergillus niger. 3. The determination of the part of some enzymes of Penicillium purpurogenum in the mycelium lysis of the mould Aspergillus niger. Leopold J; Seichertová O Folia Microbiol (Praha); 1967; 12(5):458-65. PubMed ID: 6056766 [No Abstract] [Full Text] [Related]
19. Control of foliar diseases of mustard by Bacillus from reclaimed soil. Sharma N; Sharma S Microbiol Res; 2008; 163(4):408-13. PubMed ID: 16870414 [TBL] [Abstract][Full Text] [Related]
20. Kinetic studies on citric acid production by Aspergillus niger. I. Phases of mycelium growth and product formation. Chmiel A Acta Microbiol Pol B; 1975; 7(3):185-93. PubMed ID: 1189995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]