These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 8801006)
1. Characterization of bacterial communities in heavy metal contaminated soils. Roane TM; Kellogg ST Can J Microbiol; 1996 Jun; 42(6):593-603. PubMed ID: 8801006 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. Mohamed RM; Abo-Amer AE J Basic Microbiol; 2012 Feb; 52(1):53-65. PubMed ID: 22435113 [TBL] [Abstract][Full Text] [Related]
3. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
4. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]
5. Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits. Abdollahi S; Golchin A; Shahryari F Int Microbiol; 2020 Nov; 23(4):625-640. PubMed ID: 32533267 [TBL] [Abstract][Full Text] [Related]
6. Metals other than uranium affected microbial community composition in a historical uranium-mining site. Sitte J; Löffler S; Burkhardt EM; Goldfarb KC; Büchel G; Hazen TC; Küsel K Environ Sci Pollut Res Int; 2015 Dec; 22(24):19326-41. PubMed ID: 26122566 [TBL] [Abstract][Full Text] [Related]
7. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
9. Molecular and functional assessment of bacterial community convergence in metal-amended soils. Anderson JA; Hooper MJ; Zak JC; Cox SB Microb Ecol; 2009 Jul; 58(1):10-22. PubMed ID: 19030917 [TBL] [Abstract][Full Text] [Related]
10. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Stefanowicz AM; Niklińska M; Kapusta P; Szarek-Łukaszewska G Sci Total Environ; 2010 Nov; 408(24):6134-41. PubMed ID: 20870268 [TBL] [Abstract][Full Text] [Related]
11. Inorganic-ion resistance by bacteria isolated from a Mexico City freeway. Vaca Pacheco S; Miranda R; Cervantes C Antonie Van Leeuwenhoek; 1995; 67(4):333-7. PubMed ID: 7574548 [TBL] [Abstract][Full Text] [Related]
12. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Marabottini R; Stazi SR; Papp R; Grego S; Moscatelli MC Ecotoxicol Environ Saf; 2013 Oct; 96():147-53. PubMed ID: 23856118 [TBL] [Abstract][Full Text] [Related]
13. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
14. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. Bachate SP; Cavalca L; Andreoni V J Appl Microbiol; 2009 Jul; 107(1):145-56. PubMed ID: 19291237 [TBL] [Abstract][Full Text] [Related]
15. Metagenomic analysis of microbial community and function involved in cd-contaminated soil. Feng G; Xie T; Wang X; Bai J; Tang L; Zhao H; Wei W; Wang M; Zhao Y BMC Microbiol; 2018 Feb; 18(1):11. PubMed ID: 29439665 [TBL] [Abstract][Full Text] [Related]
16. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Naz T; Khan MD; Ahmed I; Rehman SU; Rha ES; Malook I; Jamil M Toxicol Ind Health; 2016 Sep; 32(9):1619-27. PubMed ID: 25739395 [TBL] [Abstract][Full Text] [Related]
17. Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils. Jebara SH; Abdelkerim S; Fatnassi IC; Chiboub M; Saadani O; Jebara M J Basic Microbiol; 2015 Mar; 55(3):346-53. PubMed ID: 24740715 [TBL] [Abstract][Full Text] [Related]
18. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
19. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Stefanowicz AM; Kapusta P; Szarek-Łukaszewska G; Grodzińska K; Niklińska M; Vogt RD Sci Total Environ; 2012 Nov; 439():211-9. PubMed ID: 23073370 [TBL] [Abstract][Full Text] [Related]
20. Microbial diversity and community structure in agricultural soils suffering from 4 years of Pb contamination. An F; Diao Z; Lv J Can J Microbiol; 2018 May; 64(5):305-316. PubMed ID: 29401407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]