These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8801030)

  • 1. Protrusive activity quantitatively determines the rate and direction of cell locomotion.
    Keller HU; Bebie H
    Cell Motil Cytoskeleton; 1996; 33(4):241-51. PubMed ID: 8801030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of bleb formation, locomotion, and polarity of Walker carcinosarcoma cells by hypertonic media correlates with cell volume reduction but not with changes in the F-actin content.
    Fedier A; Keller HU
    Cell Motil Cytoskeleton; 1997; 37(4):326-37. PubMed ID: 9258505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane.
    Keller H; Eggli P
    Cell Motil Cytoskeleton; 1998; 41(2):181-93. PubMed ID: 9786092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution of surface-bound con A is quantitatively related to the movement of cells developing polarity.
    Fedier A; Eggli P; Keller HU
    Cell Motil Cytoskeleton; 1999; 44(1):44-57. PubMed ID: 10470018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells.
    Sroka J; Kamiński R; Michalik M; Madeja Z; Przestalski S; Korohoda W
    Cell Mol Biol Lett; 2004; 9(1):15-30. PubMed ID: 15048148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin accumulation in pseudopods or in the tail of polarized walker carcinosarcoma cells quantitatively correlates with local folding of the cell surface membrane.
    Keller H; Eggli P
    Cell Motil Cytoskeleton; 1998; 40(4):342-53. PubMed ID: 9712264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localised depletion of polymerised actin at the front of Walker carcinosarcoma cells increases the speed of locomotion.
    Keller H; Zadeh AD; Eggli P
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):189-202. PubMed ID: 12211101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of protrusions of the cell surface during tissue cell movement.
    Trinkaus JP
    Prog Clin Biol Res; 1980; 41():887-906. PubMed ID: 7192864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redundancy of lamellipodia in locomoting Walker carcinosarcoma cells.
    Keller HU
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):247-56. PubMed ID: 10962479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suction pressure can induce uncoupling of the plasma membrane from cortical actin.
    Rentsch PS; Keller H
    Eur J Cell Biol; 2000 Dec; 79(12):975-81. PubMed ID: 11152288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells.
    Gutjahr MC; Rossy J; Niggli V
    Exp Cell Res; 2005 Aug; 308(2):422-38. PubMed ID: 15950966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of locomotion for simple-shaped cells.
    Lee J; Ishihara A; Theriot JA; Jacobson K
    Nature; 1993 Mar; 362(6416):167-71. PubMed ID: 8450887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts.
    Stéphanou A; Chaplain MA; Tracqui P
    Bull Math Biol; 2004 Sep; 66(5):1119-54. PubMed ID: 15294420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin filament branching and protrusion velocity in a simple 1D model of a motile cell.
    Dawes AT; Bard Ermentrout G; Cytrynbaum EN; Edelstein-Keshet L
    J Theor Biol; 2006 Sep; 242(2):265-79. PubMed ID: 16600307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protrusion, contraction and segregation of membrane components associated with passive deformation and shape recovery of Walker carcinosarcoma cells.
    Schütz K; Keller H
    Eur J Cell Biol; 1998 Oct; 77(2):100-10. PubMed ID: 9840459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetry in the distribution of free versus cytoskeletal myosin II in locomoting microcapillary endothelial cells.
    Kolega J
    Exp Cell Res; 1997 Feb; 231(1):66-82. PubMed ID: 9056413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion.
    Bereiter-Hahn J; Lüers H
    Cell Biochem Biophys; 1998; 29(3):243-62. PubMed ID: 9868581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assay of primary astrocyte migration as a tool to study Rho GTPase function in cell polarization.
    Etienne-Manneville S
    Methods Enzymol; 2006; 406():565-78. PubMed ID: 16472688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using molecular genetics as a tool in understanding crawling cell locomotion in myoblasts.
    Peckham M; Wells C; Taylor-Harris P; Coles D; Zicha D; Dunn GA
    Biochem Soc Symp; 1999; 65():281-99. PubMed ID: 10320945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comings and goings of actin: coupling protrusion and retraction in cell motility.
    Small JV; Resch GP
    Curr Opin Cell Biol; 2005 Oct; 17(5):517-23. PubMed ID: 16099152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.