These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 880225)

  • 21. Glucose transport inhibition by proteolytic degradation of the human erythrocyte membrane inner surface.
    Masiak SJ; LeFevre PG
    Biochim Biophys Acta; 1977 Mar; 465(2):371-7. PubMed ID: 16250347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solubilization, reconstitution, and attempted affinity chromatography of the sugar transporter of the erythrocyte membrane.
    Weber J; Warden DA; Semenza G; Diedrich DF
    J Cell Biochem; 1985; 27(2):83-96. PubMed ID: 4039332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artefacts due to sodium dodecylsulfate polyacrylamide gel electrophoresis in the study of human erythrocyte membrane calcium binding protein.
    Boivin P; Bernard JF; Bournier O
    Biomedicine; 1976 Dec; 25(9):315. PubMed ID: 1000037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of calcium transport in inside-out vesicles of human erythrocyte membranes by a soluble cytoplasmic activator.
    Macintyre JD; Green JW
    Biochim Biophys Acta; 1978 Jul; 510(2):373-7. PubMed ID: 667051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The stereospecific D-glucose transport activity of cholate extracts from human erythrocyte membranes.
    Lundahl P; Acevedo F; Fröman G; Phutrakul S
    Biochim Biophys Acta; 1981 Jun; 644(1):101-7. PubMed ID: 7196260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical parameters for functional reconstitution of glucose transport in Trypanosoma brucei membrane vesicles.
    Bayele HK
    Biochim Biophys Acta; 2001 Aug; 1513(2):223-31. PubMed ID: 11470094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of glucose transport activity from erythrocyte membranes without detergent and its use in studying effects of ATP depletion.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Jul; 859(2):180-8. PubMed ID: 3730375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative extraction of erythrocyte EDTA-membrane proteins by some ionic and non-ionic detergents.
    Ballestrin G; Covaz L; Scutari G
    Boll Soc Ital Biol Sper; 1980 Jun; 56(11):1103-8. PubMed ID: 6449956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The permeability of bilayer lipid membranes on the incorporation of erythrocyte membrane extracts and the identification of the monosaccharide transport proteins.
    Phutrakul S; Jones MN
    Biochim Biophys Acta; 1979 Jan; 550(2):188-200. PubMed ID: 758944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane solubilization by detergents, and detergent/protein ratios [proceedings].
    Loizaga B; Gurtubay IG; Macarulla JM; Goñi FM; Gómez JC
    Biochem Soc Trans; 1979 Feb; 7(1):148-50. PubMed ID: 437262
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of lead on erythrocyte membranes.
    Fukumoto K; Karai I; Horiguchi S
    Br J Ind Med; 1983 May; 40(2):220-3. PubMed ID: 6830722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstitution of the monosaccharide-transport system of the human erythrocyte membrane.
    Nickson JK; Jones MN
    Biochem Soc Trans; 1977; 5(1):147-9. PubMed ID: 892146
    [No Abstract]   [Full Text] [Related]  

  • 34. 125I-insulin degradation by normal rabbit erythrocyte membranes solubilized in different detergents.
    Bansal DD; Jhamb A
    Indian J Exp Biol; 1987 Dec; 25(12):869-70. PubMed ID: 3331161
    [No Abstract]   [Full Text] [Related]  

  • 35. Quantitative composition and characterization of the proteins in membrane vesicles released from erythrocytes by dimyristoylphosphatidylcholine. A membrane system without cytoskeleton.
    Weitz M; Bjerrum OJ; Ott P; Brodbeck U
    J Cell Biochem; 1982; 19(2):179-91. PubMed ID: 6184380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of Sendai virus proteins with the cytoplasmic surface of erythrocyte membranes following viral envelope fusion.
    Caldwell SE; Lyles DS
    J Biol Chem; 1981 May; 256(10):4838-42. PubMed ID: 6262306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of sulfobromophthalein transport in erythrocyte membranes induced by bilitranslocase.
    Miccio M; Lunazzi GC; Gazzin B; Sottocasa GL
    Biochim Biophys Acta; 1990 Mar; 1023(1):140-2. PubMed ID: 2317493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. cGMP (guanosine 3',5'-cyclic monophosphate) transport across human erythrocyte membranes.
    Wu CP; Woodcock H; Hladky SB; Barrand MA
    Biochem Pharmacol; 2005 Apr; 69(8):1257-62. PubMed ID: 15794947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyapatite chromatography of the D-glucose transport protein of human erythrocyte membranes.
    Fröman G
    FEBS Lett; 1982 Jul; 143(2):220-4. PubMed ID: 6288459
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.