These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 880327)

  • 1. Is optical detection of magnetic resonance useful in detecting heterogeneity in protein phosphorescence? [proceedings].
    Maki AH
    Biophys J; 1977 Jul; 19(1):78-80. PubMed ID: 880327
    [No Abstract]   [Full Text] [Related]  

  • 2. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity in the circular polarization of protein fluorescence [proceedings].
    Schlessinger J; Steinberg IZ
    Biophys J; 1977 Jul; 19(1):80-2. PubMed ID: 880328
    [No Abstract]   [Full Text] [Related]  

  • 5. The tryptophan phosphorescence of porcine and mutant bovine odorant-binding proteins: a probe for the local protein structure and dynamics.
    D'Auria S; Staiano M; Varriale A; Gonnelli M; Marabotti A; Rossi M; Strambini GB
    J Proteome Res; 2008 Mar; 7(3):1151-8. PubMed ID: 18232631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for ligand-induced conformational changes in proteins from phosphorescence spectroscopy.
    Li Z; Galley WC
    Biophys J; 1989 Aug; 56(2):353-60. PubMed ID: 2775830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.
    Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B
    Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance dependence of the tryptophan-disulfide interaction at the triplet level from pulsed phosphorescence studies on a model system.
    Li Z; Lee WE; Galley WC
    Biophys J; 1989 Aug; 56(2):361-7. PubMed ID: 2775831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity and dynamics of protein conformation revealed by fluorescence decay kinetics of tryptophan residues [proceedings].
    Grinvald A; Steinberg IZ
    Biophys J; 1977 Jul; 19(1):74-7. PubMed ID: 880325
    [No Abstract]   [Full Text] [Related]  

  • 11. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():380-7. PubMed ID: 25025310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the time-resolved absorption and phosphorescence from the tryptophan triplet state in proteins in solution.
    Gershenson A; Gafni A; Steel D
    Photochem Photobiol; 1998 Apr; 67(4):391-8. PubMed ID: 9559583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Polarized luminescence of macromolecules with tryptophan markers. Parameters of high-frequency motion and structure of synthetic polypeptides and proteins].
    Gotlib IuIa; Rystov AV
    Biofizika; 1983; 28(3):399-402. PubMed ID: 6871262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of tryptophan phosphorescence in proteins.
    Strambini GB; Gabellieri E
    Photochem Photobiol; 1990 Jun; 51(6):643-8. PubMed ID: 2195561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB
    Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-lattice relaxation in the triplet state of the buried tryptophan residue of ribonuclease T1.
    Ghosh S; Petrin M; Maki A
    Biophys J; 1986 Mar; 49(3):753-60. PubMed ID: 3083881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Tryptophan phosphorescence of nascent and inactivated actin at the room temperature].
    Mazhul' VM; Zaĭtseva EM; Shavlovskiĭ MM; Kuznetsova IM; Turoverov KK
    Biofizika; 2001; 46(6):988-96. PubMed ID: 11771297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity and solute quenching of protein fluorescence [proceedings].
    Lehrer SS
    Biophys J; 1977 Jul; 19(1):77-8. PubMed ID: 880326
    [No Abstract]   [Full Text] [Related]  

  • 19. Heterogeneity of fluorescence [proceedings].
    Formoso C
    Biophys J; 1977 Jul; 19(1):73. PubMed ID: 880323
    [No Abstract]   [Full Text] [Related]  

  • 20. Pre-denaturing transitions in human serum albumin probed using time-resolved phosphorescence.
    Sagoo K; Hirsch R; Johnston P; McLoskey D; Hungerford G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():611-7. PubMed ID: 24509539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.