BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8804577)

  • 1. Evidence for essential arginine residues at the active sites of maize branching enzymes.
    Cao H; Preiss J
    J Protein Chem; 1996 Apr; 15(3):291-304. PubMed ID: 8804577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis evidence for arginine-384 residue at the active site of maize branching enzyme II.
    Cao H; Preiss J
    J Protein Chem; 1999 Apr; 18(3):379-86. PubMed ID: 10395456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the active center of branching enzyme II from maize endosperm.
    Kuriki T; Guan H; Sivak M; Preiss J
    J Protein Chem; 1996 Apr; 15(3):305-13. PubMed ID: 8804578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of essential histidine residues of maize branching enzymes by chemical modification and site-directed mutagenesis.
    Funane K; Libessart N; Stewart D; Michishita T; Preiss J
    J Protein Chem; 1998 Oct; 17(7):579-90. PubMed ID: 9853672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis.
    Makhmoudova A; Williams D; Brewer D; Massey S; Patterson J; Silva A; Vassall KA; Liu F; Subedi S; Harauz G; Siu KW; Tetlow IJ; Emes MJ
    J Biol Chem; 2014 Mar; 289(13):9233-46. PubMed ID: 24550386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of branching enzyme II of maize endosperm in Escherichia coli.
    Guan HP; Baba T; Preiss J
    Cell Mol Biol (Noisy-le-grand); 1994 Nov; 40(7):981-8. PubMed ID: 7849565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential arginine residues in maize starch synthase IIa are involved in both ADP-glucose and primer binding.
    Imparl-Radosevich JM; Keeling PL; Guan H
    FEBS Lett; 1999 Sep; 457(3):357-62. PubMed ID: 10471808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes.
    Hong S; Preiss J
    Arch Biochem Biophys; 2000 Jun; 378(2):349-55. PubMed ID: 10860552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of L-phenylalanine oxidase from Pseudomonas sp. P-501 by phenylglyoxal. Identification of one essential arginyl residue.
    Mukouyama EB; Hirose T; Suzuki H
    J Biochem; 1998 Jun; 123(6):1097-103. PubMed ID: 9603998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of branching enzyme I of maize endosperm in Escherichia coli.
    Guan HP; Baba T; Preiss J
    Plant Physiol; 1994 Apr; 104(4):1449-53. PubMed ID: 8016271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate-459 is important for Escherichia coli branching enzyme activity.
    Binderup K; Preiss J
    Biochemistry; 1998 Jun; 37(25):9033-7. PubMed ID: 9636047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine residue 384 at the catalytic center is important for branching enzyme II from maize endosperm.
    Libessart N; Preiss J
    Arch Biochem Biophys; 1998 Dec; 360(1):135-41. PubMed ID: 9826438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal.
    Yamamoto H; Kawakita M
    Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Escherichia coli branching enzyme in tubers of amylose-free transgenic potato leads to an increased branching degree of the amylopectin.
    Kortstee AJ; Vermeesch AM; de Vries BJ; Jacobsen E; Visser RG
    Plant J; 1996 Jul; 10(1):83-90. PubMed ID: 8758980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and crystallographic characterization of the starch branching enzyme I (BEI) from Oryza sativa L.
    Vu NT; Shimada H; Kakuta Y; Nakashima T; Ida H; Omori T; Nishi A; Satoh H; Kimura M
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):2858-66. PubMed ID: 18997409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-serine binds to arginine-148 of the beta 2 subunit of Escherichia coli tryptophan synthase.
    Tanizawa K; Miles EW
    Biochemistry; 1983 Jul; 22(15):3594-603. PubMed ID: 6412746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site.
    Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal.
    Higuchi T; Imamura Y; Otagiri M
    Biochim Biophys Acta; 1994 Jan; 1199(1):81-6. PubMed ID: 8280759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-selective modulation of the permeability transition pore by arginine modification. Opposing effects of p-hydroxyphenylglyoxal and phenylglyoxal.
    Linder MD; Morkunaite-Haimi S; Kinnunen PK; Bernardi P; Eriksson O
    J Biol Chem; 2002 Jan; 277(2):937-42. PubMed ID: 11698400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.