These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 8804577)
1. Evidence for essential arginine residues at the active sites of maize branching enzymes. Cao H; Preiss J J Protein Chem; 1996 Apr; 15(3):291-304. PubMed ID: 8804577 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis evidence for arginine-384 residue at the active site of maize branching enzyme II. Cao H; Preiss J J Protein Chem; 1999 Apr; 18(3):379-86. PubMed ID: 10395456 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the active center of branching enzyme II from maize endosperm. Kuriki T; Guan H; Sivak M; Preiss J J Protein Chem; 1996 Apr; 15(3):305-13. PubMed ID: 8804578 [TBL] [Abstract][Full Text] [Related]
4. Analysis of essential histidine residues of maize branching enzymes by chemical modification and site-directed mutagenesis. Funane K; Libessart N; Stewart D; Michishita T; Preiss J J Protein Chem; 1998 Oct; 17(7):579-90. PubMed ID: 9853672 [TBL] [Abstract][Full Text] [Related]
5. Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. Makhmoudova A; Williams D; Brewer D; Massey S; Patterson J; Silva A; Vassall KA; Liu F; Subedi S; Harauz G; Siu KW; Tetlow IJ; Emes MJ J Biol Chem; 2014 Mar; 289(13):9233-46. PubMed ID: 24550386 [TBL] [Abstract][Full Text] [Related]
6. Expression of branching enzyme II of maize endosperm in Escherichia coli. Guan HP; Baba T; Preiss J Cell Mol Biol (Noisy-le-grand); 1994 Nov; 40(7):981-8. PubMed ID: 7849565 [TBL] [Abstract][Full Text] [Related]
7. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding. Adak S; Mazumder A; Banerjee RK Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798 [TBL] [Abstract][Full Text] [Related]
8. Essential arginine residues in maize starch synthase IIa are involved in both ADP-glucose and primer binding. Imparl-Radosevich JM; Keeling PL; Guan H FEBS Lett; 1999 Sep; 457(3):357-62. PubMed ID: 10471808 [TBL] [Abstract][Full Text] [Related]
9. Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes. Hong S; Preiss J Arch Biochem Biophys; 2000 Jun; 378(2):349-55. PubMed ID: 10860552 [TBL] [Abstract][Full Text] [Related]
10. Chemical modification of L-phenylalanine oxidase from Pseudomonas sp. P-501 by phenylglyoxal. Identification of one essential arginyl residue. Mukouyama EB; Hirose T; Suzuki H J Biochem; 1998 Jun; 123(6):1097-103. PubMed ID: 9603998 [TBL] [Abstract][Full Text] [Related]
11. Expression of branching enzyme I of maize endosperm in Escherichia coli. Guan HP; Baba T; Preiss J Plant Physiol; 1994 Apr; 104(4):1449-53. PubMed ID: 8016271 [TBL] [Abstract][Full Text] [Related]
12. Glutamate-459 is important for Escherichia coli branching enzyme activity. Binderup K; Preiss J Biochemistry; 1998 Jun; 37(25):9033-7. PubMed ID: 9636047 [TBL] [Abstract][Full Text] [Related]
13. Arginine residue 384 at the catalytic center is important for branching enzyme II from maize endosperm. Libessart N; Preiss J Arch Biochem Biophys; 1998 Dec; 360(1):135-41. PubMed ID: 9826438 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal. Yamamoto H; Kawakita M Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984 [TBL] [Abstract][Full Text] [Related]
15. Expression of Escherichia coli branching enzyme in tubers of amylose-free transgenic potato leads to an increased branching degree of the amylopectin. Kortstee AJ; Vermeesch AM; de Vries BJ; Jacobsen E; Visser RG Plant J; 1996 Jul; 10(1):83-90. PubMed ID: 8758980 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and crystallographic characterization of the starch branching enzyme I (BEI) from Oryza sativa L. Vu NT; Shimada H; Kakuta Y; Nakashima T; Ida H; Omori T; Nishi A; Satoh H; Kimura M Biosci Biotechnol Biochem; 2008 Nov; 72(11):2858-66. PubMed ID: 18997409 [TBL] [Abstract][Full Text] [Related]
17. L-serine binds to arginine-148 of the beta 2 subunit of Escherichia coli tryptophan synthase. Tanizawa K; Miles EW Biochemistry; 1983 Jul; 22(15):3594-603. PubMed ID: 6412746 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal. Higuchi T; Imamura Y; Otagiri M Biochim Biophys Acta; 1994 Jan; 1199(1):81-6. PubMed ID: 8280759 [TBL] [Abstract][Full Text] [Related]
20. Ligand-selective modulation of the permeability transition pore by arginine modification. Opposing effects of p-hydroxyphenylglyoxal and phenylglyoxal. Linder MD; Morkunaite-Haimi S; Kinnunen PK; Bernardi P; Eriksson O J Biol Chem; 2002 Jan; 277(2):937-42. PubMed ID: 11698400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]