BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 8804594)

  • 1. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton.
    Satcher RL; Dewey CF
    Biophys J; 1996 Jul; 71(1):109-18. PubMed ID: 8804594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow.
    Satcher R; Dewey CF; Hartwig JH
    Microcirculation; 1997 Dec; 4(4):439-53. PubMed ID: 9431512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocyte adhesion and changes in endothelial cell number, morphology, and F-actin distribution elicited by low shear stress in vivo.
    Walpola PL; Gotlieb AI; Langille BL
    Am J Pathol; 1993 May; 142(5):1392-400. PubMed ID: 8494043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics of actin networks. I. Rheology of semi-dilute F-actin.
    Zaner KS
    Biophys J; 1995 Mar; 68(3):1019-26. PubMed ID: 7756522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells.
    Mathur AB; Truskey GA; Reichert WM
    Biophys J; 2000 Apr; 78(4):1725-35. PubMed ID: 10733955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coping with cellular stress: the mechanical resistance of porous protein networks.
    Janmey PA
    Biophys J; 1996 Jul; 71(1):3-5. PubMed ID: 8804582
    [No Abstract]   [Full Text] [Related]  

  • 8. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy.
    Ma W; Sun Y; Han D; Chu W; Lin D; Chen D
    Microsc Res Tech; 2006 Oct; 69(10):784-93. PubMed ID: 16892194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force propagation and force generation in cells.
    Jonas O; Duschl C
    Cytoskeleton (Hoboken); 2010 Sep; 67(9):555-63. PubMed ID: 20607861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments.
    Sato M; Suzuki K; Ueki Y; Ohashi T
    Acta Biomater; 2007 May; 3(3):311-9. PubMed ID: 17055790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells.
    Morita T; Kurihara H; Maemura K; Yoshizumi M; Yazaki Y
    J Clin Invest; 1993 Oct; 92(4):1706-12. PubMed ID: 8408624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal reorganization of actin filaments and differentiation of intercellular boundaries in the rat aortic endothelial cells.
    Kobayashi N; Sakai T
    Cell Tissue Res; 1994 Dec; 278(3):471-82. PubMed ID: 7850858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension.
    Wang N; Ingber DE
    Biophys J; 1994 Jun; 66(6):2181-9. PubMed ID: 8075352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial adherence under shear stress is dependent upon microfilament reorganization.
    Wechezak AR; Wight TN; Viggers RF; Sauvage LR
    J Cell Physiol; 1989 Apr; 139(1):136-46. PubMed ID: 2708451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch.
    Moore JE; Bürki E; Suciu A; Zhao S; Burnier M; Brunner HR; Meister JJ
    Ann Biomed Eng; 1994; 22(4):416-22. PubMed ID: 7998687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the cytoskeleton in endothelial repair.
    Gotlieb AI; Wong MK; Boden P; Fone AC
    Scanning Microsc; 1987 Dec; 1(4):1715-26. PubMed ID: 3433059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress.
    Kim DW; Gotlieb AI; Langille BL
    Arteriosclerosis; 1989; 9(4):439-45. PubMed ID: 2751473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate deformation determines actin cytoskeleton reorganization: A mathematical modeling and experimental study.
    Wang JH
    J Theor Biol; 2000 Jan; 202(1):33-41. PubMed ID: 10623497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response.
    Tseng Y; Kole TP; Lee JS; Fedorov E; Almo SC; Schafer BW; Wirtz D
    Biochem Biophys Res Commun; 2005 Aug; 334(1):183-92. PubMed ID: 15992772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.