BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8804622)

  • 21. Essential activation of Na(+)-H+ exchange by [H+]i in HL-60 cells.
    Restrepo D; Cho DS; Kron MJ
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C490-502. PubMed ID: 2169197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo application of intestinal pH measurement using 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) fluorescence imaging.
    Maréchal X; Mordon S; Devoisselle JM; Bégu S; Guery B; Nevière R; Buys B; Dhelin G; Lesage JC; Mathieu D; Chopin C
    Photochem Photobiol; 1999 Nov; 70(5):813-9. PubMed ID: 10568174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular pH measurement with fluorescent dye in canine basilar arteries.
    Yu J; Zheng JJ; Ong BY; Bose R
    Blood Vessels; 1991; 28(6):464-74. PubMed ID: 1782402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superiority of in vitro over in vivo calibrations of BCECF in vascular smooth muscle cells.
    Boyarsky G; Hanssen C; Clyne LA
    FASEB J; 1996 Aug; 10(10):1205-12. PubMed ID: 8751723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity.
    Trapp S; Lückermann M; Brooks PA; Ballanyi K
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):695-710. PubMed ID: 8930837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the uptake of the fluorescent marker 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) by hydrogenosomes in Trichomonas vaginalis.
    Scott DA; Docampo R; Benchimol M
    Eur J Cell Biol; 1998 Jun; 76(2):139-45. PubMed ID: 9696354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correcting for artifacts in complex aqueous solutions when using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)- 5-(and -6)carboxyfluorescein.
    Cardullo RA; Dandala S
    Anal Biochem; 1999 Feb; 267(2):351-6. PubMed ID: 10036141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH dependence of K+ conductances of rat cortical collecting duct principal cells.
    Schlatter E; Haxelmans S; Hirsch J; Leipziger J
    Pflugers Arch; 1994 Oct; 428(5-6):631-40. PubMed ID: 7838686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloride-dependent transport of NH4+ into bee retinal glial cells.
    Marcaggi P; Thwaites DT; Deitmer JW; Coles JA
    Eur J Neurosci; 1999 Jan; 11(1):167-77. PubMed ID: 9987021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein as a dual-emission fluorescent indicator of intracellular pH suitable for argon laser confocal microscopy.
    Lanz E; Slavík J; Kotyk A
    Folia Microbiol (Praha); 1999; 44(4):429-34. PubMed ID: 10983238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular pH of halobacteria can be determined by the fluorescent dye 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein.
    Tsujimoto K; Semadeni M; Huflejt M; Packer L
    Biochem Biophys Res Commun; 1988 Aug; 155(1):123-9. PubMed ID: 3415676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inadequacy of high K+/nigericin for calibrating BCECF. II. Intracellular pH dependence of the correction.
    Boyarsky G; Hanssen C; Clyne LA
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1146-56. PubMed ID: 8897820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular chloride activity in glial cells of the leech central nervous system.
    Ballanyi K; Schlue WR
    J Physiol; 1990 Jan; 420():325-36. PubMed ID: 2324988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of BCECF on intracellular pH of human platelets.
    Aharonovitz O; Fridman H; Livne AA; Granot Y
    Biochim Biophys Acta; 1996 Oct; 1284(2):227-32. PubMed ID: 8914588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of BCECF and propidium iodide to assess membrane integrity of acutely isolated CA1 neurons from rat hippocampus.
    Bevensee MO; Schwiening CJ; Boron WF
    J Neurosci Methods; 1995 May; 58(1-2):61-75. PubMed ID: 7475234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloride-dependent pH regulation in connective glial cells of the leech nervous system.
    Szatkowski MS; Schlue WR
    Brain Res; 1994 Nov; 665(1):1-4. PubMed ID: 7882000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of procaine on intracellular pH and its regulation: measurements with pH-selective micro-electrodes in Retzius neurones of the leech.
    Moser H; Heinemeyer D; Asal M; Schlue WR
    Pflugers Arch; 1988 Oct; 412(6):589-96. PubMed ID: 3211710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular chloride activity of leech neurones and glial cells in physiological, low chloride saline.
    Munsch T; Reusch M; Deitmer JW
    J Comp Physiol A; 1995 Feb; 176(2):273-80. PubMed ID: 7884686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulus-evoked changes of extra- and intracellular pH in the leech central nervous system. I. Bicarbonate dependence.
    Rose CR; Deitmer JW
    J Neurophysiol; 1995 Jan; 73(1):125-31. PubMed ID: 7714558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calibration methods and avoidance of errors in measurement of intracellular pH (pHcyt) using the indicator bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) in human platelets.
    Valant PA; Haynes DH
    J Fluoresc; 1992 Sep; 2(3):191-206. PubMed ID: 24241630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.