These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8804690)
1. Growth of dorsal spinocerebellar axons through a lesion of their spinal pathway during early development in the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Dev Brain Res; 1996 May; 93(1-2):33-48. PubMed ID: 8804690 [TBL] [Abstract][Full Text] [Related]
2. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana). Wang XM; Qin YQ; Terman JR; Martin GF Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256 [TBL] [Abstract][Full Text] [Related]
3. Developmental plasticity of selected spinocerebellar axons. Studies using the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Dev Brain Res; 1997 Sep; 102(2):309-14. PubMed ID: 9352116 [TBL] [Abstract][Full Text] [Related]
4. Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Anat Rec; 1998 Aug; 251(4):528-47. PubMed ID: 9713988 [TBL] [Abstract][Full Text] [Related]
5. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana. Martin GF; Terman JR; Wang XM Brain Res Bull; 2000 Nov; 53(5):677-87. PubMed ID: 11165803 [TBL] [Abstract][Full Text] [Related]
6. Developmental plasticity of reticulospinal and vestibulospinal axons in the north American opossum, Didelphis virginiana. Wang XM; Qin YQ; Xu XM; Martin GF J Comp Neurol; 1994 Nov; 349(2):288-302. PubMed ID: 7860784 [TBL] [Abstract][Full Text] [Related]
7. Developmental plasticity of the rubrospinal tract in the North American opossum. Xu XM; Martin GF J Comp Neurol; 1989 Jan; 279(3):368-81. PubMed ID: 2465321 [TBL] [Abstract][Full Text] [Related]
8. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. Wang XM; Terman JR; Martin GF J Comp Neurol; 1998 Aug; 398(1):83-97. PubMed ID: 9703028 [TBL] [Abstract][Full Text] [Related]
9. Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Dev Brain Res; 1999 Jan; 112(1):65-77. PubMed ID: 9974160 [TBL] [Abstract][Full Text] [Related]
10. Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Brain Res Bull; 2000 Dec; 53(6):845-55. PubMed ID: 11179852 [TBL] [Abstract][Full Text] [Related]
11. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates. Wang XM; Basso DM; Terman JR; Bresnahan JC; Martin GF Exp Neurol; 1998 May; 151(1):50-69. PubMed ID: 9582254 [TBL] [Abstract][Full Text] [Related]
12. Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum. Xu XM; Martin GF J Comp Neurol; 1991 Nov; 313(1):103-12. PubMed ID: 1761748 [TBL] [Abstract][Full Text] [Related]
13. Evidence for growth of supraspinal axons through the lesion after transection of the thoracic spinal cord in the developing opossum Didelphis virginiana. Wang XM; Terman JR; Martin GF J Comp Neurol; 1996 Jul; 371(1):104-15. PubMed ID: 8835721 [TBL] [Abstract][Full Text] [Related]
14. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica. Qin YQ; Wang XM; Martin GF Brain Res Dev Brain Res; 1993 Sep; 75(1):75-90. PubMed ID: 7693371 [TBL] [Abstract][Full Text] [Related]
15. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana. Pindzola RR; Ho RH; Martin GF J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285 [TBL] [Abstract][Full Text] [Related]
16. The response of rubrospinal neurons to axotomy at different stages of development in the North American opossum. Xu XM; Martin GF J Neurotrauma; 1992; 9(2):93-105. PubMed ID: 1383556 [TBL] [Abstract][Full Text] [Related]
17. The response of rubrospinal neurons to axotomy in the adult opossum, Didelphis virginiana. Xu XM; Martin GF Exp Neurol; 1990 Apr; 108(1):46-54. PubMed ID: 2318287 [TBL] [Abstract][Full Text] [Related]
18. Light microscopic observations on the relationships between 5-hydroxytryptamine-immunoreactive axons and dorsal spinocerebellar tract cells in Clarke's column in the cat. Pearson JC; Sedivec MJ; Dewey DE; Fyffe RE Exp Brain Res; 2000 Feb; 130(3):320-7. PubMed ID: 10706431 [TBL] [Abstract][Full Text] [Related]
19. Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana). Cabana T; Martin GF Brain Res; 1984 Aug; 317(2):247-63. PubMed ID: 6478250 [TBL] [Abstract][Full Text] [Related]
20. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein. Ghooray GT; Martin GF Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]