These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 8805508)
21. Dual function of protein confinement in chaperonin-assisted protein folding. Brinker A; Pfeifer G; Kerner MJ; Naylor DJ; Hartl FU; Hayer-Hartl M Cell; 2001 Oct; 107(2):223-33. PubMed ID: 11672529 [TBL] [Abstract][Full Text] [Related]
22. Effects of interactions with the GroEL cavity on protein folding rates. Sirur A; Best RB Biophys J; 2013 Mar; 104(5):1098-106. PubMed ID: 23473493 [TBL] [Abstract][Full Text] [Related]
23. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation. Bhattacharyya AM; Horowitz PM J Biol Chem; 2001 Aug; 276(31):28739-43. PubMed ID: 11397797 [TBL] [Abstract][Full Text] [Related]
24. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening. Kawe M; Plückthun A J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651 [TBL] [Abstract][Full Text] [Related]
25. Partitioning of rhodanese onto GroEL. Chaperonin binds a reversibly oxidized form derived from the native protein. Smith KE; Voziyan PA; Fisher MT J Biol Chem; 1998 Oct; 273(44):28677-81. PubMed ID: 9786862 [TBL] [Abstract][Full Text] [Related]
26. Oxidized GroEL can function as a chaperonin. Melkani GC; Zardeneta G; Mendoza JA Front Biosci; 2004 Jan; 9():724-31. PubMed ID: 14766403 [TBL] [Abstract][Full Text] [Related]
27. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions. Trevino RJ; Gliubich F; Berni R; Cianci M; Chirgwin JM; Zanotti G; Horowitz PM J Biol Chem; 1999 May; 274(20):13938-47. PubMed ID: 10318804 [TBL] [Abstract][Full Text] [Related]
28. Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Farr GW; Fenton WA; Horwich AL Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5342-7. PubMed ID: 17372195 [TBL] [Abstract][Full Text] [Related]
29. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Mayhew M; da Silva AC; Martin J; Erdjument-Bromage H; Tempst P; Hartl FU Nature; 1996 Feb; 379(6564):420-6. PubMed ID: 8559246 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Hayer-Hartl MK; Weber F; Hartl FU EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033 [TBL] [Abstract][Full Text] [Related]
31. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Mendoza JA; Dulin P; Warren T Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029 [TBL] [Abstract][Full Text] [Related]
32. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES. Weber F; Hayer-Hartl M Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478 [No Abstract] [Full Text] [Related]
33. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043 [TBL] [Abstract][Full Text] [Related]
34. Nuclear magnetic resonance spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL. Koculi E; Horst R; Horwich AL; Wüthrich K Protein Sci; 2011 Aug; 20(8):1380-6. PubMed ID: 21633984 [TBL] [Abstract][Full Text] [Related]
35. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Zahn R; Buckle AM; Perrett S; Johnson CM; Corrales FJ; Golbik R; Fersht AR Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15024-9. PubMed ID: 8986757 [TBL] [Abstract][Full Text] [Related]
36. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401. Gibbons DL; Horowitz PM J Biol Chem; 1995 Mar; 270(13):7335-40. PubMed ID: 7706275 [TBL] [Abstract][Full Text] [Related]
37. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation. Landry SJ; Gierasch LM Biochemistry; 1991 Jul; 30(30):7359-62. PubMed ID: 1677268 [TBL] [Abstract][Full Text] [Related]
38. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. Wang J; Boisvert DC J Mol Biol; 2003 Apr; 327(4):843-55. PubMed ID: 12654267 [TBL] [Abstract][Full Text] [Related]
39. Isolation and characterization of rhodanese intermediates during thermal inactivation and their implications for the mechanism of protein aggregation. Bhattacharyya AM; Horowitz PM Biochemistry; 2002 Jan; 41(1):422-9. PubMed ID: 11772042 [TBL] [Abstract][Full Text] [Related]
40. Solution X-ray scattering study on the chaperonin GroEL from Escherichia coli. Igarashi Y; Kimura K; Ichimura K; Matsuzaki S; Ikura T; Kuwajima K; Kihara H Biophys Chem; 1995 Feb; 53(3):259-66. PubMed ID: 7880961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]