These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 8805508)
41. Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometry. Mendoza JA; Lorimer GH; Horowitz PM J Biol Chem; 1991 Sep; 266(26):16973-6. PubMed ID: 1680127 [TBL] [Abstract][Full Text] [Related]
42. GroEL and GroES increase the specific enzymatic activity of newly-synthesized rhodanese if present during in vitro transcription/translation. Tsalkova T; Zardeneta G; Kudlicki W; Kramer G; Horowitz PM; Hardesty B Biochemistry; 1993 Apr; 32(13):3377-80. PubMed ID: 8096394 [TBL] [Abstract][Full Text] [Related]
43. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. Makino Y; Taguchi H; Yoshida M FEBS Lett; 1993 Dec; 336(2):363-7. PubMed ID: 7903258 [TBL] [Abstract][Full Text] [Related]
44. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL. Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928 [TBL] [Abstract][Full Text] [Related]
45. Rhodanese folding is controlled by the partitioning of its folding intermediates. Gorovits BM; McGee WA; Horowitz PM Biochim Biophys Acta; 1998 Jan; 1382(1):120-8. PubMed ID: 9507086 [TBL] [Abstract][Full Text] [Related]
46. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides. Ybarra J; Horowitz PM J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433 [TBL] [Abstract][Full Text] [Related]
47. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. Taguchi H J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372 [TBL] [Abstract][Full Text] [Related]
48. Structural changes in GroEL effected by binding a denatured protein substrate. Falke S; Fisher MT; Gogol EP J Mol Biol; 2001 May; 308(4):569-77. PubMed ID: 11350160 [TBL] [Abstract][Full Text] [Related]
50. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage. Motojima F; Yoshida M Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470 [TBL] [Abstract][Full Text] [Related]
51. Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide. Mendoza JA; Campo GD J Biol Chem; 1996 Jul; 271(27):16344-9. PubMed ID: 8663187 [TBL] [Abstract][Full Text] [Related]
52. Functional communications between the apical and equatorial domains of GroEL through the intermediate domain. Kawata Y; Kawagoe M; Hongo K; Miyazaki T; Higurashi T; Mizobata T; Nagai J Biochemistry; 1999 Nov; 38(48):15731-40. PubMed ID: 10625439 [TBL] [Abstract][Full Text] [Related]
53. Role of chaperonins in protein folding. A new model of the GroEL/GroES complex architecture. Basharov MA Biochemistry (Mosc); 1997 Apr; 62(4):416-24. PubMed ID: 9312423 [TBL] [Abstract][Full Text] [Related]
54. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains. Szpikowska BK; Swiderek KM; Sherman MA; Mas MT Protein Sci; 1998 Jul; 7(7):1524-30. PubMed ID: 9684884 [TBL] [Abstract][Full Text] [Related]
55. One-step purification and immobilization in cellulose of the GroEL apical domain fused to a carbohydrate-binding module and its use in protein refolding. Ramón-Luing LA; Cruz-Migoni A; Ruíz-Medrano R; Xoconostle-Cázares B; Ortega-Lopez J Biotechnol Lett; 2006 Mar; 28(5):301-7. PubMed ID: 16614916 [TBL] [Abstract][Full Text] [Related]
56. Nucleotide and Mg2+ induced conformational changes in GroEL can be detected by sulfhydryl labeling. Jai EA; Horowitz PM J Protein Chem; 1999 Apr; 18(3):387-96. PubMed ID: 10395457 [TBL] [Abstract][Full Text] [Related]
57. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures. Mendoza JA; Warren T; Dulin P Biochem Biophys Res Commun; 1996 Dec; 229(1):271-4. PubMed ID: 8954117 [TBL] [Abstract][Full Text] [Related]
58. Nuclear magnetic resonance approaches for characterizing interactions between the bacterial chaperonin GroEL and unstructured proteins. Nishida N; Yagi-Utsumi M; Motojima F; Yoshida M; Shimada I; Kato K J Biosci Bioeng; 2013 Aug; 116(2):160-4. PubMed ID: 23567152 [TBL] [Abstract][Full Text] [Related]
59. Do chaperonins boost protein yields by accelerating folding or preventing aggregation? Jewett AI; Shea JE Biophys J; 2008 Apr; 94(8):2987-93. PubMed ID: 18192377 [TBL] [Abstract][Full Text] [Related]
60. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]