BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8805536)

  • 21. Is the function of the cdc2 kinase subunit proteins tuned by their propensities to oligomerize? Conformational states in solution of the cdc2 kinase partners p13suc1 and p9cksphy.
    Birck C; Vachette P; Welch M; Swarén P; Samama JP
    Biochemistry; 1996 Apr; 35(17):5577-85. PubMed ID: 8611549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suc1: cdc2 affinity reagent or essential cdk adaptor protein?
    Vogel L; Baratte B
    Prog Cell Cycle Res; 1996; 2():129-35. PubMed ID: 9552390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence conservation provides the best prediction of the role of proline residues in p13suc1.
    Schymkowitz JW; Rousseau F; Itzhaki LS
    J Mol Biol; 2000 Aug; 301(1):199-204. PubMed ID: 10926502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mutation in the human cyclin-dependent kinase interacting protein, CksHs2, interferes with cyclin-dependent kinase binding and biological function, but preserves protein structure and assembly.
    Watson MH; Bourne Y; Arvai AS; Hickey MJ; Santiago A; Bernstein SL; Tainer JA; Reed SI
    J Mol Biol; 1996 Sep; 261(5):646-57. PubMed ID: 8800213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leishmania mexicana p12cks1, a homologue of fission yeast p13suc1, associates with a stage-regulated histone H1 kinase.
    Mottram JC; Grant KM
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):833-9. PubMed ID: 8670159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A three-dimensional model of the Cdc2 protein kinase: localization of cyclin- and Suc1-binding regions and phosphorylation sites.
    Marcote MJ; Knighton DR; Basi G; Sowadski JM; Brambilla P; Draetta G; Taylor SS
    Mol Cell Biol; 1993 Aug; 13(8):5122-31. PubMed ID: 8336738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex.
    Hadwiger JA; Wittenberg C; Mendenhall MD; Reed SI
    Mol Cell Biol; 1989 May; 9(5):2034-41. PubMed ID: 2664468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell cycle: reaching for a role for the Cks proteins.
    Pines J
    Curr Biol; 1996 Nov; 6(11):1399-402. PubMed ID: 8939596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations at sites involved in Suc1 binding inactivate Cdc2.
    Ducommun B; Brambilla P; Draetta G
    Mol Cell Biol; 1991 Dec; 11(12):6177-84. PubMed ID: 1944283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. p13suc1 of Schizosaccharomyces pombe regulates two distinct forms of the mitotic cdc2 kinase.
    Basi G; Draetta G
    Mol Cell Biol; 1995 Apr; 15(4):2028-36. PubMed ID: 7891698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of conformational heterogeneity in domain swapping and adapter function of the Cks proteins.
    Seeliger MA; Spichty M; Kelly SE; Bycroft M; Freund SM; Karplus M; Itzhaki LS
    J Biol Chem; 2005 Aug; 280(34):30448-59. PubMed ID: 15772084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of activated cyclosome to p13(suc1). Use for affinity purification.
    Sudakin V; Shteinberg M; Ganoth D; Hershko J; Hershko A
    J Biol Chem; 1997 Jul; 272(29):18051-9. PubMed ID: 9218435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets.
    Kaiser P; Moncollin V; Clarke DJ; Watson MH; Bertolaet BL; Reed SI; Bailly E
    Genes Dev; 1999 May; 13(9):1190-202. PubMed ID: 10323869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xe-p9, a Xenopus Suc1/Cks homolog, has multiple essential roles in cell cycle control.
    Patra D; Dunphy WG
    Genes Dev; 1996 Jun; 10(12):1503-15. PubMed ID: 8666234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and characterisation of p15(CDK-BP), a novel CDK-binding protein.
    Vogel L; Baratte B; Détivaud L; Azzi L; Leopold P; Meijer L
    Biochim Biophys Acta; 2002 Apr; 1589(2):219-31. PubMed ID: 12007796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of dimerization and interactions of p13suc1 with cyclin-dependent kinases.
    Morris MC; Heitz F; Divita G
    Biochemistry; 1998 Oct; 37(40):14257-66. PubMed ID: 9760264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+.
    Draetta G; Brizuela L; Potashkin J; Beach D
    Cell; 1987 Jul; 50(2):319-25. PubMed ID: 3297353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallization and preliminary crystallographic study of human CksHs1: a cell cycle regulatory protein.
    Arvai AS; Bourne Y; Williams D; Reed SI; Tainer JA
    Proteins; 1995 Jan; 21(1):70-3. PubMed ID: 7716171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure of the transition state for folding of domain-swapped dimeric p13suc1.
    Rousseau F; Schymkowitz JW; Wilkinson HR; Itzhaki LS
    Structure; 2002 May; 10(5):649-57. PubMed ID: 12015148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermediates control domain swapping during folding of p13suc1.
    Rousseau F; Schymkowitz JW; Wilkinson HR; Itzhaki LS
    J Biol Chem; 2004 Feb; 279(9):8368-77. PubMed ID: 14662764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.