These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8805547)

  • 1. Finding a basis for flipping bases.
    Cheng X; Blumenthal RM
    Structure; 1996 Jun; 4(6):639-45. PubMed ID: 8805547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase.
    Horton JR; Ratner G; Banavali NK; Huang N; Choi Y; Maier MA; Marquez VE; MacKerell AD; Cheng X
    Nucleic Acids Res; 2004; 32(13):3877-86. PubMed ID: 15273274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA.
    Morikawa K; Shirakawa M
    Mutat Res; 2000 Aug; 460(3-4):257-75. PubMed ID: 10946233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase.
    Huang N; Banavali NK; MacKerell AD
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):68-73. PubMed ID: 12506195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of base flipping in damage recognition and catalysis by T4 endonuclease V.
    McCullough AK; Dodson ML; Schärer OD; Lloyd RS
    J Biol Chem; 1997 Oct; 272(43):27210-7. PubMed ID: 9341165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distal structural elements coordinate a conserved base flipping network.
    Matje DM; Krivacic CT; Dahlquist FW; Reich NO
    Biochemistry; 2013 Mar; 52(10):1669-76. PubMed ID: 23409802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases.
    Mol CD; Arvai AS; Begley TJ; Cunningham RP; Tainer JA
    J Mol Biol; 2002 Jan; 315(3):373-84. PubMed ID: 11786018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution.
    Klimasauskas S; Szyperski T; Serva S; Wüthrich K
    EMBO J; 1998 Jan; 17(1):317-24. PubMed ID: 9427765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition.
    Vassylyev DG; Kashiwagi T; Mikami Y; Ariyoshi M; Iwai S; Ohtsuka E; Morikawa K
    Cell; 1995 Dec; 83(5):773-82. PubMed ID: 8521494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous base flipping in DNA and its possible role in methyltransferase binding.
    Chen YZ; Mohan V; Griffey RH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1133-7. PubMed ID: 11088571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base.
    O'Gara M; Horton JR; Roberts RJ; Cheng X
    Nat Struct Biol; 1998 Oct; 5(10):872-7. PubMed ID: 9783745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency normal mode in DNA HhaI methyltransferase and motions of residues involved in the base flipping.
    Luo J; Bruice TC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16194-8. PubMed ID: 16236720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes.
    Estabrook RA; Lipson R; Hopkins B; Reich N
    J Biol Chem; 2004 Jul; 279(30):31419-28. PubMed ID: 15143064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK; Youngblood B; Reich NO
    J Mol Biol; 2006 Sep; 362(3):516-27. PubMed ID: 16926025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Conformational Fluctuations of Protein toward Methylation in DNA by Cytosine-5-methyltransferase.
    Mondal M; Yang Y; Yang L; Yang W; Gao YQ
    J Chem Theory Comput; 2018 Dec; 14(12):6679-6689. PubMed ID: 30403861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA totally flipped-out by methylase.
    Winkler FK
    Structure; 1994 Feb; 2(2):79-83. PubMed ID: 8081744
    [No Abstract]   [Full Text] [Related]  

  • 17. Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase.
    Vilkaitis G; Dong A; Weinhold E; Cheng X; Klimasauskas S
    J Biol Chem; 2000 Dec; 275(49):38722-30. PubMed ID: 11102456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing.
    Reinisch KM; Chen L; Verdine GL; Lipscomb WN
    Cell; 1995 Jul; 82(1):143-53. PubMed ID: 7606780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-promoted base flipping controls DNA methylation fidelity.
    Matje DM; Zhou H; Smith DA; Neely RK; Dryden DT; Jones AC; Dahlquist FW; Reich NO
    Biochemistry; 2013 Mar; 52(10):1677-85. PubMed ID: 23409782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine.
    Daujotyte D; Serva S; Vilkaitis G; Merkiene E; Venclovas C; Klimasauskas S
    Structure; 2004 Jun; 12(6):1047-55. PubMed ID: 15274924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.