These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method. Leung DH; Wang YG; Zhu M Biostatistics; 2009 Jul; 10(3):436-45. PubMed ID: 19346528 [TBL] [Abstract][Full Text] [Related]
7. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018 [TBL] [Abstract][Full Text] [Related]
8. The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. Miller ME; Davis CS; Landis JR Biometrics; 1993 Dec; 49(4):1033-44. PubMed ID: 8117899 [TBL] [Abstract][Full Text] [Related]
9. Application of generalized estimating equations to a study of in vitro radiation sensitivity. Cologne JB; Carter RL; Fujita S; Ban S Biometrics; 1993 Sep; 49(3):927-34. PubMed ID: 8241379 [TBL] [Abstract][Full Text] [Related]
10. Methods for analyzing multivariate binary data, with association between outcomes of interest. Molenberghs G; Ritter LL Biometrics; 1996 Sep; 52(3):1121-33. PubMed ID: 8924574 [TBL] [Abstract][Full Text] [Related]
11. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Preisser JS; Lohman KK; Rathouz PJ Stat Med; 2002 Oct; 21(20):3035-54. PubMed ID: 12369080 [TBL] [Abstract][Full Text] [Related]
12. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Shults J; Sun W; Tu X; Kim H; Amsterdam J; Hilbe JM; Ten-Have T Stat Med; 2009 Aug; 28(18):2338-55. PubMed ID: 19472307 [TBL] [Abstract][Full Text] [Related]
13. Jackknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data. Lipsitz SR; Dear KB; Zhao L Biometrics; 1994 Sep; 50(3):842-6. PubMed ID: 7981404 [TBL] [Abstract][Full Text] [Related]
14. What can go wrong when ignoring correlation bounds in the use of generalized estimating equations. Sabo RT; Chaganty NR Stat Med; 2010 Oct; 29(24):2501-7. PubMed ID: 20690109 [TBL] [Abstract][Full Text] [Related]
15. Bias-corrected maximum likelihood estimator of the intraclass correlation parameter for binary data. Saha KK; Paul SR Stat Med; 2005 Nov; 24(22):3497-512. PubMed ID: 16007569 [TBL] [Abstract][Full Text] [Related]
16. Regression models for mixed discrete and continuous responses with potentially missing values. Fitzmaurice GM; Laird NM Biometrics; 1997 Mar; 53(1):110-22. PubMed ID: 9147588 [TBL] [Abstract][Full Text] [Related]
17. A note on the use of unbiased estimating equations to estimate correlation in analysis of longitudinal trials. Sun W; Shults J; Leonard M Biom J; 2009 Feb; 51(1):5-18. PubMed ID: 19197953 [TBL] [Abstract][Full Text] [Related]
18. A simulation study to assess statistical methods for binary repeated measures data. Masaoud E; Stryhn H Prev Vet Med; 2010 Feb; 93(2-3):81-97. PubMed ID: 20004989 [TBL] [Abstract][Full Text] [Related]
19. Methods for interaction analyses using family-based case-control data: conditional logistic regression versus generalized estimating equations. Hancock DB; Martin ER; Li YJ; Scott WK Genet Epidemiol; 2007 Dec; 31(8):883-93. PubMed ID: 17565751 [TBL] [Abstract][Full Text] [Related]
20. Second-order estimating equations for the analysis of clustered current status data. Cook RJ; Tolusso D Biostatistics; 2009 Oct; 10(4):756-72. PubMed ID: 19635760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]