These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8805824)

  • 1. Optimal strategies for imaging thick biological specimens: exit wavefront reconstruction and energy-filtered imaging.
    Han KF; Gubbens AJ; Sedat JW; Agard DA
    J Microsc; 1996 Aug; 183(Pt 2):124-32. PubMed ID: 8805824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging.
    Han KF; Sedat JW; Agard DA
    J Microsc; 1995 May; 178(Pt 2):107-19. PubMed ID: 7783184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical image restoration of thick biological specimens using multiple focus levels in transmission electron microscopy.
    Han KF; Sedat JW; Agard DA
    J Struct Biol; 1997 Dec; 120(3):237-44. PubMed ID: 9441929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thick specimens in the CEM and STEM. Resolution and image formation.
    Groves T
    Ultramicroscopy; 1975 Jul; 1(1):15-31. PubMed ID: 1236017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrast in the electron spectroscopic imaging mode of a TEM. IV. Thick specimens imaged by the most-probable energy loss.
    Reimer L; Rennekamp R; Fromm I; Langenfeld M
    J Microsc; 1991 Apr; 162(Pt 1):3-14. PubMed ID: 1870112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy filtered STEM imaging of thick biological sections.
    Colliex C; Mory C; Olins AL; Olins DE; Tencé M
    J Microsc; 1989 Jan; 153(Pt 1):1-21. PubMed ID: 2709400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM.
    Dickerson JL; Lu PH; Hristov D; Dunin-Borkowski RE; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113510. PubMed ID: 35367900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement.
    Bouwer JC; Mackey MR; Lawrence A; Deerinck TJ; Jones YZ; Terada M; Martone ME; Peltier S; Ellisman MH
    J Struct Biol; 2004 Dec; 148(3):297-306. PubMed ID: 15522778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CART: a controlled algebraic reconstruction technique for electron microscope tomography of embedded, sectioned specimen.
    Jonges R; Boon PN; van Marle J; Dietrich AJ; Grimbergen CA
    Ultramicroscopy; 1999 Apr; 76(4):203-19. PubMed ID: 10214884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of contrasts in atomic resolution electron spectroscopic images of planar defects in crystalline specimens.
    Navidi-Kasmai T; Kohl H
    Ultramicroscopy; 2000 Apr; 81(3-4):223-33. PubMed ID: 10782646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.
    Wang F; Sun Y; Cao M; Nishi R
    Micron; 2016 Apr; 83():54-61. PubMed ID: 26897587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple scattering effects of MeV electrons in very thick amorphous specimens.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    Ultramicroscopy; 2010 Feb; 110(3):259-68. PubMed ID: 20079570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison of zero-loss and conventional electron diffraction from two-dimensional and thin three-dimensional protein crystals.
    Yonekura K; Maki-Yonekura S; Namba K
    Biophys J; 2002 May; 82(5):2784-97. PubMed ID: 11964264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomographic reconstruction from energy-filtered images of thick biological sections.
    Olins AL; Olins DE; Levy HA; Margle SM; Tinnel EP; Durfee RC
    J Microsc; 1989 Jun; 154(Pt 3):257-65. PubMed ID: 2769746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens.
    Rez P; Larsen T; Elbaum M
    J Struct Biol; 2016 Dec; 196(3):466-478. PubMed ID: 27678408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image quality of microns-thick specimens in the ultra-high voltage electron microscope.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    Micron; 2010 Jul; 41(5):490-7. PubMed ID: 20202855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission electron microscopy of bulk specimens over 10µm in thickness.
    Sadamatsu S; Tanaka M; Higashida K; Matsumura S
    Ultramicroscopy; 2016 Mar; 162():10-16. PubMed ID: 26716725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of inelastic scattering on EFTEM images--exemplified at 20 kV for graphene and silicon.
    Lee Z; Rose H; Hambach R; Wachsmuth P; Kaiser U
    Ultramicroscopy; 2013 Nov; 134():102-12. PubMed ID: 23870401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative energy-filtered electron microscopy of biological molecules in ice.
    Langmore JP; Smith MF
    Ultramicroscopy; 1992 Oct; 46(1-4):349-73. PubMed ID: 1336234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence and incoherence of inelastically scattered electron waves.
    Zhou F
    Ultramicroscopy; 2002 Aug; 92(3-4):293-304. PubMed ID: 12213031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.