These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8805841)

  • 41. Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission.
    Frizelle PA; Chen PE; Wyllie DJ
    Mol Pharmacol; 2006 Sep; 70(3):1022-32. PubMed ID: 16778008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Verdoorn TA; Dingledine R
    Mol Pharmacol; 1988 Sep; 34(3):298-307. PubMed ID: 2901662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation of recombinant NR1/NR2C NMDA receptors.
    Dravid SM; Prakash A; Traynelis SF
    J Physiol; 2008 Sep; 586(18):4425-39. PubMed ID: 18635641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dimensions of the narrow portion of a recombinant NMDA receptor channel.
    Villarroel A; Burnashev N; Sakmann B
    Biophys J; 1995 Mar; 68(3):866-75. PubMed ID: 7538803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quinolinate activation of N-methyl-D-aspartate ion channels in rat hippocampal neurons.
    McLarnon JG; Curry K
    Neurosci Lett; 1990 Aug; 116(3):341-6. PubMed ID: 1700844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors.
    Curras MC; Dingledine R
    Mol Pharmacol; 1992 Mar; 41(3):520-6. PubMed ID: 1372086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials.
    Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM
    Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antagonism of N-methyl-D-aspartate receptors by sigma site ligands: potency, subtype-selectivity and mechanisms of inhibition.
    Whittemore ER; Ilyin VI; Woodward RM
    J Pharmacol Exp Ther; 1997 Jul; 282(1):326-38. PubMed ID: 9223571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Are chimeric kainate/N-methyl-D-aspartate receptors expressed in Xenopus oocytes from mammalian and amphibian RNA?
    Brackley PT; Usherwood PN
    J Pharmacol Exp Ther; 1993 May; 265(2):910-9. PubMed ID: 7684447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine.
    Kloda A; Adams DJ
    Br J Pharmacol; 2005 Feb; 144(3):323-30. PubMed ID: 15655527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple structural determinants of voltage-dependent magnesium block in recombinant NMDA receptors.
    Kawajiri S; Dingledine R
    Neuropharmacology; 1993 Nov; 32(11):1203-11. PubMed ID: 8107974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethanol sensitivity of recombinant human N-methyl-D-aspartate receptors.
    Smothers CT; Clayton R; Blevins T; Woodward JJ
    Neurochem Int; 2001 Apr; 38(4):333-40. PubMed ID: 11137628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells.
    Misra C; Brickley SG; Wyllie DJ; Cull-Candy SG
    J Physiol; 2000 Jun; 525 Pt 2(Pt 2):299-305. PubMed ID: 10835034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activation of NR1a/NR2B receptors by monocyte-derived macrophage secretory products: implications for human immunodeficiency virus type one-associated dementia.
    Xiong H; McCabe L; Skifter D; Monaghan DT; Gendelman HE
    Neurosci Lett; 2003 May; 341(3):246-50. PubMed ID: 12697294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A slow NMDA channel: in search of a role.
    Vicini S; Rumbaugh G
    J Physiol; 2000 Jun; 525 Pt 2(Pt 2):283. PubMed ID: 10835032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels.
    Watanabe J; Beck C; Kuner T; Premkumar LS; Wollmuth LP
    J Neurosci; 2002 Dec; 22(23):10209-16. PubMed ID: 12451122
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A single-channel method for evaluation of very magnitudes of Ca2+ ion fluxes through epsilon4/zeta1 N-methyl-D-aspartate receptor channels in bilayer lipid membranes.
    Wakabayashi M; Hirano A; Sugawara M; Uchino S; Nakajima-Iijima S
    J Pharm Biomed Anal; 2001 Jan; 24(3):453-60. PubMed ID: 11199224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soluble factors from IL-1β-stimulated astrocytes activate NR1a/NR2B receptors: implications for HIV-1-induced neurodegeneration.
    Jing T; Wu L; Borgmann K; Surendran S; Ghorpade A; Liu J; Xiong H
    Biochem Biophys Res Commun; 2010 Nov; 402(2):241-6. PubMed ID: 20933498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neurosteroids and glutamate toxicity in fibroblasts expressing human NMDA receptors.
    Scott M; Tanguay JJ; Beninger RJ; Jhamandas K; Boegman RJ
    Neurotox Res; 2002 May; 4(3):183-90. PubMed ID: 12829399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ps in the (channel) pod are not alike..
    Noam Y; Baram TZ
    Epilepsy Curr; 2007; 7(5):136-7. PubMed ID: 17998975
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.