These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8805842)

  • 1. A new abnormality of human vision provides evidence of interactions between cortical mechanisms sensitive to movement and those sensitive to colour.
    Morland AB; Ogilvie JA; Ruddock KH; Wright JR
    Proc Biol Sci; 1996 Aug; 263(1373):1087-94. PubMed ID: 8805842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study.
    Mullen KT; Thompson B; Hess RF
    J Vis; 2010 Nov; 10(13):13. PubMed ID: 21106678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
    Mullen KT; Dumoulin SO; McMahon KL; de Zubicaray GI; Hess RF
    Eur J Neurosci; 2007 Jan; 25(2):491-502. PubMed ID: 17284191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective deficit of visual search in moving displays after extrastriate damage.
    McLeod P; Heywood C; Driver J; Zihl J
    Nature; 1989 Jun; 339(6224):466-7. PubMed ID: 2498666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central representation of colour vision deduced from studies on a subject with a central colour vision defect.
    Ruddock KH; Waterfield VA
    Mod Probl Ophthalmol; 1978; 19():336-40. PubMed ID: 310058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate colour-opponent mechanisms underlie the detection and discrimination of moving chromatic targets.
    Willis A; Anderson SJ
    Proc Biol Sci; 1998 Dec; 265(1413):2435-41. PubMed ID: 9921683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation discrimination is impaired in the absence of the striate cortical contribution to human vision.
    Morland AB; Ogilvie JA; Ruddock KH; Wright JR
    Proc Biol Sci; 1996 May; 263(1370):633-40. PubMed ID: 8677261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychophysical channels and ERP population responses in human visual cortex: area summation across chromatic and achromatic pathways.
    Ribeiro MJ; Castelo-Branco M
    Vision Res; 2010 Jun; 50(13):1283-91. PubMed ID: 20430049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotopic organisation of cortical mechanisms responsive to colour: evidence from patient studies.
    Morland AB; Ruddock KH
    Acta Psychol (Amst); 1997 Oct; 97(1):7-24. PubMed ID: 9448511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast dependence of colour and luminance motion mechanisms in human vision.
    Hawken MJ; Gegenfurtner KR; Tang C
    Nature; 1994 Jan; 367(6460):268-70. PubMed ID: 8121491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals.
    Matteau I; Kupers R; Ricciardi E; Pietrini P; Ptito M
    Brain Res Bull; 2010 Jul; 82(5-6):264-70. PubMed ID: 20466041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential inhibition of chromatic and achromatic perception by transcranial magnetic stimulation of the human visual cortex.
    Paulus W; Korinth S; Wischer S; Tergau F
    Neuroreport; 1999 Apr; 10(6):1245-8. PubMed ID: 10363933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual thresholds to low-contrast pattern displacement, color contrast, and luminance contrast stimuli in Parkinson's disease.
    Haug BA; Trenkwalder C; Arden GB; Oertel WH; Paulus W
    Mov Disord; 1994 Sep; 9(5):563-70. PubMed ID: 7990852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.
    Walsh V; Ellison A; Battelli L; Cowey A
    Proc Biol Sci; 1998 Mar; 265(1395):537-43. PubMed ID: 9569672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoluminant coloured stimuli are undetectable in blindsight even when they move.
    Alexander I; Cowey A
    Exp Brain Res; 2013 Mar; 225(1):147-52. PubMed ID: 23263562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.
    Robson AG; Kulikowski JJ
    Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual processing of chromatic signals in the absence of a geniculostriate projection.
    Barbur JL; Sahraie A; Simmons A; Weiskrantz L; Williams SC
    Vision Res; 1998 Nov; 38(21):3347-53. PubMed ID: 9893863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The segregation and integration of colour in motion processing revealed by motion after-effects.
    McKeefry DJ; Laviers EG; McGraw PV
    Proc Biol Sci; 2006 Jan; 273(1582):91-9. PubMed ID: 16519240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive plasticity during the development of colour vision.
    Wagner HJ; Kröger RH
    Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.