These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8806631)

  • 1. Carboxyl-terminal modification influences subunit assembly of sickle hemoglobin beta chains.
    Moulton DP; Morris A; Vasudevan G; Chiu F; McDonald MJ
    Biochem Biophys Res Commun; 1996 Sep; 226(2):309-13. PubMed ID: 8806631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of carboxyterminal modification on the oligomeric structure of human beta hemoglobin.
    Moulton DP; Joshi AA; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1994 Oct; 204(2):956-61. PubMed ID: 7980567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxyl-terminal modification alters the subunit interactions and assembly pathways of normal and sickle hemoglobins.
    Morris A; McDonald MJ
    J Protein Chem; 2001 Nov; 20(8):611-7. PubMed ID: 11890201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains.
    Rao MJ; Malavalli A; Manjula BN; Kumar R; Prabhakaran M; Sun DP; Ho NT; Ho C; Nagel RL; Acharya AS
    J Mol Biol; 2000 Jul; 300(5):1389-406. PubMed ID: 10903876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry.
    Griffith WP; Kaltashov IA
    Biochemistry; 2003 Aug; 42(33):10024-33. PubMed ID: 12924951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real time monitoring of sickle cell hemoglobin fiber formation by UV resonance Raman spectroscopy.
    Knee KM; Mukerji I
    Biochemistry; 2009 Oct; 48(41):9903-11. PubMed ID: 19778007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cross-linked human hemoglobin by conventional isoelectric focusing, immobilized pH gradients, capillary electrophoresis, and mass spectrometry.
    Bossi A; Patel MJ; Webb EJ; Baldwin MA; Jacob RJ; Burlingame AL; Righetti PG
    Electrophoresis; 1999 Oct; 20(14):2810-7. PubMed ID: 10546811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subunit assembly of hemoglobins A and S.
    McDonald MJ; Shaeffer JR; Turci SM; Bunn HF
    Prog Clin Biol Res; 1981; 55():27-39. PubMed ID: 7291192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEGylation of Val-1(alpha) destabilizes the tetrameric structure of hemoglobin.
    Hu T; Li D; Manjula BN; Brenowitz M; Prabhakaran M; Acharya SA
    Biochemistry; 2009 Jan; 48(3):608-16. PubMed ID: 19119852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical modulation of sickle cell haemoglobin polymerisation.
    Iqbal Z; McKendry R; Horton M; Caruana DJ
    Analyst; 2007 Jan; 132(1):27-33. PubMed ID: 17180176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of beta87 Thr in the beta6 Val acceptor site during deoxy Hb S polymerization.
    Reddy LR; Reddy KS; Surrey S; Adachi K
    Biochemistry; 1997 Dec; 36(50):15992-8. PubMed ID: 9398334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeric beta-EF3-alpha hemoglobin (Psi): energetics of subunit interaction and ligand binding.
    Kiger L; Dumoulin A; Edelstein SJ; Abraham DJ; Promé D; Poyart C; Marden MC; Pagnier J
    Biochemistry; 1998 May; 37(20):7328-39. PubMed ID: 9585547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of alpha and beta carboxyl-terminal residues in the kinetics of human oxyhemoglobin dimer assembly.
    Joshi AA; McDonald MJ
    J Biol Chem; 1994 Mar; 269(11):8549-53. PubMed ID: 7907594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carbon monoxide derivative of human hemoglobin carrying the double mutation LeuB10-->Tyr and HisE7-->Gln on alpha and beta chains probed by infrared spectroscopy.
    Miele AE; Draghi F; Vallone B; Boffi A
    Arch Biochem Biophys; 2002 Jun; 402(1):59-64. PubMed ID: 12051683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence studies of normal and sickle beta apohemoglobin self-association.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Oct; 13(7):585-90. PubMed ID: 7702740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein conformational heterogeneity as a binding catalyst: ESI-MS study of hemoglobin H formation.
    Griffith WP; Kaltashov IA
    Biochemistry; 2007 Feb; 46(7):2020-6. PubMed ID: 17253776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths.
    Wang JC; Turner MS; Agarwal G; Kwong S; Josephs R; Ferrone FA; Briehl RW
    J Mol Biol; 2002 Jan; 315(4):601-12. PubMed ID: 11812133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.