BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8806735)

  • 1. Posttranscriptional regulation of glucose-6-phosphate dehydrogenase by dietary polyunsaturated fat.
    Stabile LP; Hodge DL; Klautky SA; Salati LM
    Arch Biochem Biophys; 1996 Aug; 332(2):269-79. PubMed ID: 8806735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutritional regulation of the glucose-6-phosphate dehydrogenase gene is mediated by a nuclear posttranscriptional mechanism.
    Hodge DL; Salati LM
    Arch Biochem Biophys; 1997 Dec; 348(2):303-12. PubMed ID: 9434742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary regulation of expression of glucose-6-phosphate dehydrogenase.
    Salati LM; Amir-Ahmady B
    Annu Rev Nutr; 2001; 21():121-40. PubMed ID: 11375432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status.
    Amir-Ahmady B; Salati LM
    J Biol Chem; 2001 Mar; 276(13):10514-23. PubMed ID: 11124967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyunsaturated fatty acids inhibit the expression of the glucose-6-phosphate dehydrogenase gene in primary rat hepatocytes by a nuclear posttranscriptional mechanism.
    Stabile LP; Klautky SA; Minor SM; Salati LM
    J Lipid Res; 1998 Oct; 39(10):1951-63. PubMed ID: 9788241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization and tissue-specific expression of the mouse glucose-6-phosphate dehydrogenase gene.
    Hodge DL; Charron T; Stabile LP; Klautky SA; Salati LM
    DNA Cell Biol; 1998 Mar; 17(3):283-91. PubMed ID: 9539108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the splicing of glucose-6-phosphate dehydrogenase precursor mRNA by polyunsaturated fatty acids.
    Tao H; Szeszel-Fedorowicz W; Amir-Ahmady B; Gibson MA; Stabile LP; Salati LM
    J Biol Chem; 2002 Aug; 277(34):31270-8. PubMed ID: 12072438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of pentose phosphate pathway dehydrogenase synthesis and mRNA by dietary fat in rats.
    Tomlinson JE; Nakayama R; Holten D
    J Nutr; 1988 Mar; 118(3):408-15. PubMed ID: 3351636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glucose-6-phosphate dehydrogenase synthesis and mRNA abundance in cultured rat hepatocytes.
    Manos P; Nakayama R; Holten D
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):245-50. PubMed ID: 2039474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of glucose-6-phosphate dehydrogenase mRNA by solution hybridization: correlation with rates of synthesis.
    Kim MH; Nakayama R; Holten D
    Biochim Biophys Acta; 1990 Jun; 1049(2):177-81. PubMed ID: 2163684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of fasting-refeeding and dietary linoleate on liver glucose-6-phosphate dehydrogenase and phospholipid fatty acid composition in rats adapted to a purified diet.
    Williams MA; Tinoco J; Ojakian MA; Clark L
    Lipids; 1977 Apr; 12(4):386-92. PubMed ID: 857113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of hnRNPs K, L and A2/B1 as candidate proteins involved in the nutritional regulation of mRNA splicing.
    Griffith BN; Walsh CM; Szeszel-Fedorowicz W; Timperman AT; Salati LM
    Biochim Biophys Acta; 2006; 1759(11-12):552-61. PubMed ID: 17095106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carbohydrate-rich diet stimulates glucose-6-phosphate dehydrogenase expression in rat hepatic sinusoidal endothelial cells.
    Spolarics Z
    J Nutr; 1999 Jan; 129(1):105-8. PubMed ID: 9915883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary fatty acids on the control of glucose-6-phosphate dehydrogenase and malic enzyme in the starved-refed rat.
    Nace CS; Szepesi B
    J Nutr; 1976 Feb; 106(2):285-91. PubMed ID: 129545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nutrients and insulin on transcriptional and post-transcriptional regulation of glucose-6-phosphate dehydrogenase synthesis in rat liver.
    Katsurada A; Iritani N; Fukuda H; Matsumura Y; Noguchi T; Tanaka T
    Biochim Biophys Acta; 1989 Nov; 1006(1):104-10. PubMed ID: 2679879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism.
    Hillgartner FB; Charron T; Chesnut KA
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):263-8. PubMed ID: 8870677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution hybridization quantitation of G6PD mRNA in rat epididymal fat pads.
    Louie P; Nakayama R; Holten D
    Biochim Biophys Acta; 1990 Sep; 1087(1):25-30. PubMed ID: 2400787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional regulation of mRNA processing.
    Salati LM; Szeszel-Fedorowicz W; Tao H; Gibson MA; Amir-Ahmady B; Stabile LP; Hodge DL
    J Nutr; 2004 Sep; 134(9):2437S-2443S. PubMed ID: 15333739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat.
    Takahashi Y; Ide T
    Br J Nutr; 2000 Aug; 84(2):175-84. PubMed ID: 11029968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.