These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 8806781)
1. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange. Dong A; Hyslop RM; Pringle DL Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781 [TBL] [Abstract][Full Text] [Related]
2. Infrared and circular dichroism spectroscopic characterization of structural differences between beta-lactoglobulin A and B. Dong A; Matsuura J; Allison SD; Chrisman E; Manning MC; Carpenter JF Biochemistry; 1996 Feb; 35(5):1450-7. PubMed ID: 8634275 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-deuterium exchange in bovine serum albumin protein monitored by fourier transform infrared spectroscopy, part I: structural studies. Grdadolnik J; Maréchal Y Appl Spectrosc; 2005 Nov; 59(11):1347-56. PubMed ID: 16316512 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional mid-IR and near-IR correlation spectra of ribonuclease A: using overtones and combination modes to monitor changes in secondary structure. Schultz CP; Fabian H; Mantsch HH Biospectroscopy; 1998; 4(5 Suppl):S19-29. PubMed ID: 9787911 [TBL] [Abstract][Full Text] [Related]
5. Thermally induced hydrogen exchange processes in small proteins as seen by FTIR spectroscopy. Backmann J; Schultz C; Fabian H; Hahn U; Saenger W; Naumann D Proteins; 1996 Mar; 24(3):379-87. PubMed ID: 8778785 [TBL] [Abstract][Full Text] [Related]
6. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Reinstädler D; Fabian H; Backmann J; Naumann D Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolded state under native conditions. Neira JL; Sevilla P; Menéndez M; Bruix M; Rico M J Mol Biol; 1999 Jan; 285(2):627-43. PubMed ID: 9878434 [TBL] [Abstract][Full Text] [Related]
8. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686 [TBL] [Abstract][Full Text] [Related]
9. Fourier transform infared spectroscopy investigation of protein conformation in spray-dried protein/trehalose powders. French DL; Arakawa T; Li T Biopolymers; 2004 Mar; 73(4):524-31. PubMed ID: 14991670 [TBL] [Abstract][Full Text] [Related]
10. Conformational changes in the core structure of bacteriorhodopsin. Kluge T; Olejnik J; Smilowitz L; Rothschild KJ Biochemistry; 1998 Jul; 37(28):10279-85. PubMed ID: 9665736 [TBL] [Abstract][Full Text] [Related]
11. Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone. Baenziger JE; Chew JP Biochemistry; 1997 Mar; 36(12):3617-24. PubMed ID: 9132013 [TBL] [Abstract][Full Text] [Related]
12. Monitoring structural stability of trypsin inhibitor at the submolecular level by amide-proton exchange using Fourier transform infrared spectroscopy: a test case for more general application. de Jongh HH; Goormaghtigh E; Ruysschaert JM Biochemistry; 1997 Nov; 36(44):13593-602. PubMed ID: 9354628 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Laity JH; Lester CC; Shimotakahara S; Zimmerman DE; Montelione GT; Scheraga HA Biochemistry; 1997 Oct; 36(42):12683-99. PubMed ID: 9335525 [TBL] [Abstract][Full Text] [Related]
14. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange. Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen-deuterium exchange in bovine serum albumin protein monitored by Fourier transform infrared spectroscopy, part II: kinetic studies. Grdadolnik J; Maréchal Y Appl Spectrosc; 2005 Nov; 59(11):1357-64. PubMed ID: 16316513 [TBL] [Abstract][Full Text] [Related]
16. Water penetration into protein secondary structure revealed by hydrogen-deuterium exchange two-dimensional infrared spectroscopy. DeFlores LP; Tokmakoff A J Am Chem Soc; 2006 Dec; 128(51):16520-1. PubMed ID: 17177399 [TBL] [Abstract][Full Text] [Related]
17. Secondary structure of the exchange-resistant core from the nicotinic acetylcholine receptor probed directly by infrared spectroscopy and hydrogen/deuterium exchange. Méthot N; Baenziger JE Biochemistry; 1998 Oct; 37(42):14815-22. PubMed ID: 9778355 [TBL] [Abstract][Full Text] [Related]
18. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Yu S; Mei FC; Lee JC; Cheng X Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031 [TBL] [Abstract][Full Text] [Related]
19. Fourier transform infrared spectrometric analysis of protein conformation: effect of sampling method and stress factors. van de Weert M; Haris PI; Hennink WE; Crommelin DJ Anal Biochem; 2001 Oct; 297(2):160-9. PubMed ID: 11673883 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen-deuterium exchange in membrane proteins monitored by IR spectroscopy: a new tool to resolve protein structure and dynamics. Vigano C; Smeyers M; Raussens V; Scheirlinckx F; Ruysschaert JM; Goormaghtigh E Biopolymers; 2004 May-Jun 5; 74(1-2):19-26. PubMed ID: 15137087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]