These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 8806851)
1. Relative potencies of the four stereoisomers of isomalathion for inhibition of hen brain acetylcholinesterase and neurotoxic esterase in vitro. Jianmongkol S; Berkman CE; Thompson CM; Richardson RJ Toxicol Appl Pharmacol; 1996 Aug; 139(2):342-8. PubMed ID: 8806851 [TBL] [Abstract][Full Text] [Related]
2. Kinetic evidence for different mechanisms of acetylcholinesterase inhibition by (1R)- and (1S)-stereoisomers of isomalathion. Jianmongkol S; Marable BR; Berkman CE; Talley TT; Thompson CM; Richardson RJ Toxicol Appl Pharmacol; 1999 Feb; 155(1):43-53. PubMed ID: 10036217 [TBL] [Abstract][Full Text] [Related]
5. Relative inhibitory potencies of chlorpyrifos oxon, chlorpyrifos methyl oxon, and mipafox for acetylcholinesterase versus neuropathy target esterase. Kropp TJ; Richardson RJ J Toxicol Environ Health A; 2003 Jun; 66(12):1145-57. PubMed ID: 12791540 [TBL] [Abstract][Full Text] [Related]
6. Stereoselective inactivation of Torpedo californica acetylcholinesterase by isomalathion: inhibitory reactions with (1R)- and (1S)-isomers proceed by different mechanisms. Doorn JA; Thompson CM; Christner RB; Richardson RJ Chem Res Toxicol; 2003 Aug; 16(8):958-65. PubMed ID: 12924923 [TBL] [Abstract][Full Text] [Related]
7. Probing the active sites of butyrylcholinesterase and cholesterol esterase with isomalathion: conserved stereoselective inactivation of serine hydrolases structurally related to acetylcholinesterase. Doorn JA; Talley TT; Thompson CM; Richardson RJ Chem Res Toxicol; 2001 Jul; 14(7):807-13. PubMed ID: 11453726 [TBL] [Abstract][Full Text] [Related]
8. Acetylcholinesterase and neuropathy target esterase in chickens treated with acephate. Wilson BW; Henderson JD; Kellner TP; McEuen SF; Griffis LC; Lai JC Neurotoxicology; 1990; 11(3):483-91. PubMed ID: 2284053 [TBL] [Abstract][Full Text] [Related]
9. Subacute neurotoxicity induced in mice by potent organophosphorus neuropathy target esterase inhibitors. Wu SY; Casida JE Toxicol Appl Pharmacol; 1996 Jul; 139(1):195-202. PubMed ID: 8685903 [TBL] [Abstract][Full Text] [Related]
10. Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds. Makhaeva GF; Rudakova EV; Sigolaeva LV; Kurochkin IN; Richardson RJ J Appl Toxicol; 2016 Nov; 36(11):1468-75. PubMed ID: 26970094 [TBL] [Abstract][Full Text] [Related]
11. Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: toxicological implications. Quistad GB; Sparks SE; Segall Y; Nomura DK; Casida JE Toxicol Appl Pharmacol; 2002 Feb; 179(1):57-63. PubMed ID: 11884237 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of hen brain acetylcholinesterase and neurotoxic esterase by chlorpyrifos in vivo and kinetics of inhibition by chlorpyrifos oxon in vitro: application to assessment of neuropathic risk. Richardson RJ; Moore TB; Kayyali US; Fowke JH; Randall JC Fundam Appl Toxicol; 1993 Apr; 20(3):273-9. PubMed ID: 7684990 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: a critical review of the literature. Richardson RJ J Toxicol Environ Health; 1995 Feb; 44(2):135-65. PubMed ID: 7531775 [TBL] [Abstract][Full Text] [Related]
14. Further studies toward a mouse model for biochemical assessment of neuropathic potential of organophosphorus compounds. Makhaeva GF; Rudakova EV; Hein ND; Serebryakova OG; Kovaleva NV; Boltneva NP; Fink JK; Richardson RJ J Appl Toxicol; 2014 Dec; 34(12):1426-35. PubMed ID: 24395470 [TBL] [Abstract][Full Text] [Related]
15. Species differences in brain acetylcholinesterase and neuropathic target esterase response to monocrotophos. Siddiqui MK; Rahman MF; Mahboob M; Anjum F; Mustafa M J Environ Sci Health B; 1988 Jun; 23(3):291-9. PubMed ID: 3403919 [TBL] [Abstract][Full Text] [Related]
16. Quantitative structure-activity relationships predict the delayed neurotoxicity potential of a series of O-alkyl-O-methylchloroformimino phenylphosphonates. Malygin VV; Sokolov VB; Richardson RJ; Makhaeva GF J Toxicol Environ Health A; 2003 Apr; 66(7):611-25. PubMed ID: 12746136 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of acetylcholinesterase by (1S,3S)-isomalathion proceeds with loss of thiomethyl: kinetic and mass spectral evidence for an unexpected primary leaving group. Doorn JA; Gage DA; Schall M; Talley TT; Thompson CM; Richardson RJ Chem Res Toxicol; 2000 Dec; 13(12):1313-20. PubMed ID: 11123973 [TBL] [Abstract][Full Text] [Related]
18. The effect of a single oral dose of tri-o-cresyl phosphate on neurotoxic esterase and acetylcholinesterase activities in the central nervous system, erythrocytes and plasma. Barrett DS; Oehme FW Vet Hum Toxicol; 1994 Feb; 36(1):1-4. PubMed ID: 8154093 [TBL] [Abstract][Full Text] [Related]
19. An alternative in vitro method for detecting neuropathic compounds based on acetylcholinesterase inhibition and on inhibition and aging of neuropathy target esterase (NTE). Sogorb MA; González-González I; Pamies D; Vilanova E Toxicol In Vitro; 2010 Apr; 24(3):942-52. PubMed ID: 20097283 [TBL] [Abstract][Full Text] [Related]
20. Biosensor detection of neuropathy target esterase in whole blood as a biomarker of exposure to neuropathic organophosphorus compounds. Makhaeva GF; Sigolaeva LV; Zhuravleva LV; Eremenko AV; Kurochkin IN; Malygin VV; Richardson RJ J Toxicol Environ Health A; 2003 Apr; 66(7):599-610. PubMed ID: 12746135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]