These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8807281)

  • 1. Homology requirements for double-strand break-mediated recombination in a phage lambda-td intron model system.
    Parker MM; Court DA; Preiter K; Belfort M
    Genetics; 1996 Jul; 143(3):1057-68. PubMed ID: 8807281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intron homing with limited exon homology. Illegitimate double-strand-break repair in intron acquisition by phage t4.
    Parker MM; Belisle M; Belfort M
    Genetics; 1999 Dec; 153(4):1513-23. PubMed ID: 10581262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans and cis requirements for intron mobility in a prokaryotic system.
    Clyman J; Belfort M
    Genes Dev; 1992 Jul; 6(7):1269-79. PubMed ID: 1321069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple homing pathways used by yeast mitochondrial group II introns.
    Eskes R; Liu L; Ma H; Chao MY; Dickson L; Lambowitz AM; Perlman PS
    Mol Cell Biol; 2000 Nov; 20(22):8432-46. PubMed ID: 11046140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the double-strand break repair model of bacteriophage lambda recombination.
    Takahashi N; Kobayashi I
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2790-4. PubMed ID: 2138786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exon coconversion biases accompanying intron homing: battle of the nucleases.
    Mueller JE; Smith D; Belfort M
    Genes Dev; 1996 Sep; 10(17):2158-66. PubMed ID: 8804310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tests of the double-strand-break repair model for red-mediated recombination of phage lambda and plasmid lambda dv.
    Thaler DS; Stahl MM; Stahl FW
    Genetics; 1987 Aug; 116(4):501-11. PubMed ID: 2957271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways.
    Mueller JE; Clyman J; Huang YJ; Parker MM; Belfort M
    Genes Dev; 1996 Feb; 10(3):351-64. PubMed ID: 8595885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of exonucleolytic degradation in group I intron homing in phage T4.
    Huang YJ; Parker MM; Belfort M
    Genetics; 1999 Dec; 153(4):1501-12. PubMed ID: 10581261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications.
    Bell-Pedersen D; Quirk S; Clyman J; Belfort M
    Nucleic Acids Res; 1990 Jul; 18(13):3763-70. PubMed ID: 2165250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the recF gene of Escherichia coli K-12 in lambda recombination.
    Armengod ME
    Mol Gen Genet; 1981; 181(4):497-504. PubMed ID: 6267423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of homology in site-specific recombination of bacteriophage lambda: evidence against joining of cohesive ends.
    Nash HA; Bauer CE; Gardner JF
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4049-53. PubMed ID: 2954163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease.
    Landthaler M; Lau NC; Shub DA
    J Bacteriol; 2004 Jul; 186(13):4307-14. PubMed ID: 15205433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology-dependent interactions in phage lambda site-specific recombination.
    Kitts PA; Nash HA
    Nature; 1987 Sep 24-30; 329(6137):346-8. PubMed ID: 2957599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red-beta annealase.
    Brewster JL; Tolun G
    IUBMB Life; 2020 Aug; 72(8):1622-1633. PubMed ID: 32621393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of the Red recombination system of bacteriophage λ.
    Caldwell BJ; Bell CE
    Prog Biophys Mol Biol; 2019 Oct; 147():33-46. PubMed ID: 30904699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for conservative (two-progeny) DNA double-strand break repair.
    Yokochi T; Kusano K; Kobayashi I
    Genetics; 1995 Jan; 139(1):5-17. PubMed ID: 7705650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli.
    Ikeda H; Shiraishi K; Ogata Y
    Adv Biophys; 2004; 38():3-20. PubMed ID: 15493325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intron mobility in the T-even phages: high frequency inheritance of group I introns promoted by intron open reading frames.
    Quirk SM; Bell-Pedersen D; Belfort M
    Cell; 1989 Feb; 56(3):455-65. PubMed ID: 2644046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution, sequence homology, and homing of group I introns among T-even-like bacteriophages: evidence for recent transfer of old introns.
    Sandegren L; Sjöberg BM
    J Biol Chem; 2004 May; 279(21):22218-27. PubMed ID: 15026408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.