These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8807282)

  • 1. Genetic analysis of the bacteriophage lambda attL nucleoprotein complex.
    MacWilliams MP; Gumport RI; Gardner JF
    Genetics; 1996 Jul; 143(3):1069-79. PubMed ID: 8807282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of protein binding sites involved in formation of the bacteriophage lambda attL complex.
    MacWilliams M; Gumport RI; Gardner JF
    J Bacteriol; 1997 Feb; 179(4):1059-67. PubMed ID: 9023184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site.
    Han YW; Gumport RI; Gardner JF
    EMBO J; 1993 Dec; 12(12):4577-84. PubMed ID: 8223467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architectural flexibility in lambda site-specific recombination: three alternate conformations channel the attL site into three distinct pathways.
    Segall AM; Nash HA
    Genes Cells; 1996 May; 1(5):453-63. PubMed ID: 9078377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the λ Integrase bridges in the nucleoprotein Holliday junction intermediates of viral integrative and excisive recombination.
    Tong W; Warren D; Seah NE; Laxmikanthan G; Van Duyne GD; Landy A
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12366-71. PubMed ID: 25114247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of integrase arm-type binding sites of bacteriophage lambda. Integration and excision involve distinct interactions of integrase with arm-type sites.
    Bauer CE; Hesse SD; Gumport RI; Gardner JF
    J Mol Biol; 1986 Dec; 192(3):513-27. PubMed ID: 2951525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex.
    Cho EH; Gumport RI; Gardner JF
    J Bacteriol; 2002 Sep; 184(18):5200-3. PubMed ID: 12193639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoprotein architectures regulating the directionality of viral integration and excision.
    Seah NE; Warren D; Tong W; Laxmikanthan G; Van Duyne GD; Landy A
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12372-7. PubMed ID: 25114241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the functional domains of bacteriophage lambda integrase protein.
    Han YW; Gumport RI; Gardner JF
    J Mol Biol; 1994 Jan; 235(3):908-25. PubMed ID: 8289327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination.
    Nunes-Düby SE; Matsumoto L; Landy A
    Cell; 1989 Oct; 59(1):197-206. PubMed ID: 2529039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox.
    Frumerie C; Sylwan L; Ahlgren-Berg A; Haggård-Ljungquist E
    Virology; 2005 Feb; 332(1):284-94. PubMed ID: 15661160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic intermediates in bacteriophage lambda site-specific recombination: integrase can align pairs of attachment sites.
    Segall AM; Nash HA
    EMBO J; 1993 Dec; 12(12):4567-76. PubMed ID: 8223466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the Xis protein of bacteriophage lambda in a specific reactive complex at the attR prophage attachment site.
    Better M; Wickner S; Auerbach J; Echols H
    Cell; 1983 Jan; 32(1):161-8. PubMed ID: 6297783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of a higher order protein-DNA complex: two kinds of long-range interactions in lambda attL.
    Kim S; Moitoso de Vargas L; Nunes-Düby SE; Landy A
    Cell; 1990 Nov; 63(4):773-81. PubMed ID: 2146029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at residues 282, 286, and 293 of phage lambda integrase exert pathway-specific effects on synapsis and catalysis in recombination.
    Bankhead TM; Etzel BJ; Wolven F; Bordenave S; Boldt JL; Larsen TA; Segall AM
    J Bacteriol; 2003 Apr; 185(8):2653-66. PubMed ID: 12670991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of second-site revertants of bacteriophage lambda integrase mutants.
    Wu Z; Gumport RI; Gardner JF
    J Bacteriol; 1997 Jun; 179(12):4030-8. PubMed ID: 9190821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential affinity and cooperativity functions of the amino-terminal 70 residues of lambda integrase.
    Sarkar D; Azaro MA; Aihara H; Papagiannis CV; Tirumalai R; Nunes-Düby SE; Johnson RC; Ellenberger T; Landy A
    J Mol Biol; 2002 Dec; 324(4):775-89. PubMed ID: 12460577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arm site independence of coliphage HK022 integrase in human cells.
    Malchin N; Tuby CN; Yagil E; Kolot M
    Mol Genet Genomics; 2011 May; 285(5):403-13. PubMed ID: 21442327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular basis of co-operative DNA binding between lambda integrase and excisionase.
    Swalla BM; Cho EH; Gumport RI; Gardner JF
    Mol Microbiol; 2003 Oct; 50(1):89-99. PubMed ID: 14507366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase.
    Moitoso de Vargas L; Kim S; Landy A
    Science; 1989 Jun; 244(4911):1457-61. PubMed ID: 2544029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.