These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interaction of charybdotoxin S10A with single maxi-K channels: kinetics of blockade depend on the presence of the beta 1 subunit. Giangiacomo KM; Fremont V; Mullmann TJ; Hanner M; Cox RH; Garcia ML Biochemistry; 2000 May; 39(20):6115-22. PubMed ID: 10821684 [TBL] [Abstract][Full Text] [Related]
3. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. Tanaka Y; Meera P; Song M; Knaus HG; Toro L J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):545-57. PubMed ID: 9279807 [TBL] [Abstract][Full Text] [Related]
4. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels. Gao YD; Garcia ML Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539 [TBL] [Abstract][Full Text] [Related]
5. Cross-linking of charybdotoxin to high-conductance calcium-activated potassium channels: identification of the covalently modified toxin residue. Munujos P; Knaus HG; Kaczorowski GJ; Garcia ML Biochemistry; 1995 Aug; 34(34):10771-6. PubMed ID: 7545007 [TBL] [Abstract][Full Text] [Related]
6. The beta subunit of the high conductance calcium-activated potassium channel. Identification of residues involved in charybdotoxin binding. Hanner M; Vianna-Jorge R; Kamassah A; Schmalhofer WA; Knaus HG; Kaczorowski GJ; Garcia ML J Biol Chem; 1998 Jun; 273(26):16289-96. PubMed ID: 9632689 [TBL] [Abstract][Full Text] [Related]
7. Synthetic charybdotoxin-iberiotoxin chimeric peptides define toxin binding sites on calcium-activated and voltage-dependent potassium channels. Giangiacomo KM; Sugg EE; Garcia-Calvo M; Leonard RJ; McManus OB; Kaczorowski GJ; Garcia ML Biochemistry; 1993 Mar; 32(9):2363-70. PubMed ID: 7680230 [TBL] [Abstract][Full Text] [Related]
8. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Meera P; Wallner M; Toro L Proc Natl Acad Sci U S A; 2000 May; 97(10):5562-7. PubMed ID: 10792058 [TBL] [Abstract][Full Text] [Related]
9. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. Knaus HG; Garcia-Calvo M; Kaczorowski GJ; Garcia ML J Biol Chem; 1994 Feb; 269(6):3921-4. PubMed ID: 7508434 [TBL] [Abstract][Full Text] [Related]
10. Molecular identification of Ca2+-activated K+ channels in parotid acinar cells. Nehrke K; Quinn CC; Begenisich T Am J Physiol Cell Physiol; 2003 Feb; 284(2):C535-46. PubMed ID: 12388098 [TBL] [Abstract][Full Text] [Related]
11. Characterization of and modulation by a beta-subunit of a human maxi KCa channel cloned from myometrium. Wallner M; Meera P; Ottolia M; Kaczorowski GJ; Latorre R; Garcia ML; Stefani E; Toro L Recept Channels; 1995; 3(3):185-99. PubMed ID: 8821792 [TBL] [Abstract][Full Text] [Related]
12. Role of the C-terminus of the high-conductance calcium-activated potassium channel in channel structure and function. Schmalhofer WA; Sanchez M; Dai G; Dewan A; Secades L; Hanner M; Knaus HG; McManus OB; Kohler M; Kaczorowski GJ; Garcia ML Biochemistry; 2005 Aug; 44(30):10135-44. PubMed ID: 16042390 [TBL] [Abstract][Full Text] [Related]
13. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. Knaus HG; Schwarzer C; Koch RO; Eberhart A; Kaczorowski GJ; Glossmann H; Wunder F; Pongs O; Garcia ML; Sperk G J Neurosci; 1996 Feb; 16(3):955-63. PubMed ID: 8558264 [TBL] [Abstract][Full Text] [Related]
14. Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Sanchez M; McManus OB Neuropharmacology; 1996; 35(7):963-8. PubMed ID: 8938726 [TBL] [Abstract][Full Text] [Related]
15. Insights into alpha-K toxin specificity for K+ channels revealed through mutations in noxiustoxin. Mullmann TJ; Spence KT; Schroeder NE; Fremont V; Christian EP; Giangiacomo KM Biochemistry; 2001 Sep; 40(37):10987-97. PubMed ID: 11551194 [TBL] [Abstract][Full Text] [Related]
16. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects. Woda CB; Miyawaki N; Ramalakshmi S; Ramkumar M; Rojas R; Zavilowitz B; Kleyman TR; Satlin LM Am J Physiol Renal Physiol; 2003 Oct; 285(4):F629-39. PubMed ID: 12824078 [TBL] [Abstract][Full Text] [Related]
17. High-conductance calcium-activated potassium channels in rat brain: pharmacology, distribution, and subunit composition. Wanner SG; Koch RO; Koschak A; Trieb M; Garcia ML; Kaczorowski GJ; Knaus HG Biochemistry; 1999 Apr; 38(17):5392-400. PubMed ID: 10220326 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of beta-adrenergic modulation of large conductance, calcium-activated potassium (maxi-K) channels in Xenopus oocytes. Identification of the camp-dependent protein kinase phosphorylation site. Nara M; Dhulipala PD; Wang YX; Kotlikoff MI J Biol Chem; 1998 Jun; 273(24):14920-4. PubMed ID: 9614096 [TBL] [Abstract][Full Text] [Related]
19. Glycine 30 in iberiotoxin is a critical determinant of its specificity for maxi-K versus K(V) channels. Schroeder N; Mullmann TJ; Schmalhofer WA; Gao YD; Garcia ML; Giangiacomo KM FEBS Lett; 2002 Sep; 527(1-3):298-302. PubMed ID: 12220678 [TBL] [Abstract][Full Text] [Related]
20. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Knaus HG; McManus OB; Lee SH; Schmalhofer WA; Garcia-Calvo M; Helms LM; Sanchez M; Giangiacomo K; Reuben JP; Smith AB Biochemistry; 1994 May; 33(19):5819-28. PubMed ID: 7514038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]