These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 8808275)
1. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. van der Spek PJ; Visser CE; Hanaoka F; Smit B; Hagemeijer A; Bootsma D; Hoeijmakers JH Genomics; 1996 Jan; 31(1):20-7. PubMed ID: 8808275 [TBL] [Abstract][Full Text] [Related]
2. Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast RAD23. van der Spek PJ; Smit EM; Beverloo HB; Sugasawa K; Masutani C; Hanaoka F; Hoeijmakers JH; Hagemeijer A Genomics; 1994 Oct; 23(3):651-8. PubMed ID: 7851894 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of the rhp23(+) DNA repair gene in Schizosaccharomyces pombe. Lombaerts M; Goeloe JI; den Dulk H; Brandsma JA; Brouwer J Biochem Biophys Res Commun; 2000 Feb; 268(1):210-5. PubMed ID: 10652237 [TBL] [Abstract][Full Text] [Related]
4. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. Okuda Y; Nishi R; Ng JM; Vermeulen W; van der Horst GT; Mori T; Hoeijmakers JH; Hanaoka F; Sugasawa K DNA Repair (Amst); 2004 Oct; 3(10):1285-95. PubMed ID: 15336624 [TBL] [Abstract][Full Text] [Related]
5. HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair. Hsieh HC; Hsieh YH; Huang YH; Shen FC; Tsai HN; Tsai JH; Lai YT; Wang YT; Chuang WJ; Huang W Biochem Biophys Res Commun; 2005 Sep; 335(1):181-7. PubMed ID: 16105547 [TBL] [Abstract][Full Text] [Related]
6. Cloning, structural characterization, and chromosomal localization of the human orthologue of Saccharomyces cerevisiae MSH5 gene. Her C; Doggett NA Genomics; 1998 Aug; 52(1):50-61. PubMed ID: 9740671 [TBL] [Abstract][Full Text] [Related]
7. Solution structure and backbone dynamics of the XPC-binding domain of the human DNA repair protein hHR23B. Kim B; Ryu KS; Kim HJ; Cho SJ; Choi BS FEBS J; 2005 May; 272(10):2467-76. PubMed ID: 15885096 [TBL] [Abstract][Full Text] [Related]
8. Cloning and expression analysis of a meiosis-specific MutS homolog: the human MSH4 gene. Paquis-Flucklinger V; Santucci-Darmanin S; Paul R; Saunières A; Turc-Carel C; Desnuelle C Genomics; 1997 Sep; 44(2):188-94. PubMed ID: 9299235 [TBL] [Abstract][Full Text] [Related]
9. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Bertolaet BL; Clarke DJ; Wolff M; Watson MH; Henze M; Divita G; Reed SI Nat Struct Biol; 2001 May; 8(5):417-22. PubMed ID: 11323716 [TBL] [Abstract][Full Text] [Related]
10. A human and mouse homolog of the Schizosaccharomyces pombe rad1+ cell cycle checkpoint control gene. Bluyssen HA; van Os RI; Naus NC; Jaspers I; Hoeijmakers JH; de Klein A Genomics; 1998 Dec; 54(2):331-7. PubMed ID: 9828137 [TBL] [Abstract][Full Text] [Related]
11. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. Dantuma NP; Heinen C; Hoogstraten D DNA Repair (Amst); 2009 Apr; 8(4):449-60. PubMed ID: 19223247 [TBL] [Abstract][Full Text] [Related]
12. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Schauber C; Chen L; Tongaonkar P; Vega I; Lambertson D; Potts W; Madura K Nature; 1998 Feb; 391(6668):715-8. PubMed ID: 9490418 [TBL] [Abstract][Full Text] [Related]
13. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Schild D; Glassner BJ; Mortimer RK; Carlson M; Laurent BC Yeast; 1992 May; 8(5):385-95. PubMed ID: 1626430 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and chromosomal localization of the mouse Gpr37 gene encoding an orphan G-protein-coupled peptide receptor expressed in brain and testis. Marazziti D; Gallo A; Golini E; Matteoni R; Tocchini-Valentini GP Genomics; 1998 Nov; 53(3):315-24. PubMed ID: 9799598 [TBL] [Abstract][Full Text] [Related]
15. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Bankmann M; Prakash L; Prakash S Nature; 1992 Feb; 355(6360):555-8. PubMed ID: 1741034 [TBL] [Abstract][Full Text] [Related]
16. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Nishi R; Okuda Y; Watanabe E; Mori T; Iwai S; Masutani C; Sugasawa K; Hanaoka F Mol Cell Biol; 2005 Jul; 25(13):5664-74. PubMed ID: 15964821 [TBL] [Abstract][Full Text] [Related]
17. Expression of RAD4 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Choi IS; Kim JB; Jeon SH; Park SD Biochem Biophys Res Commun; 1993 May; 193(1):191-7. PubMed ID: 8503907 [TBL] [Abstract][Full Text] [Related]
18. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Scherly D; Nouspikel T; Corlet J; Ucla C; Bairoch A; Clarkson SG Nature; 1993 May; 363(6425):182-5. PubMed ID: 8483504 [TBL] [Abstract][Full Text] [Related]
19. Functional comparison of the yeast scERV1 and scERV2 genes. Stein G; Lisowsky T Yeast; 1998 Jan; 14(2):171-80. PubMed ID: 9483805 [TBL] [Abstract][Full Text] [Related]
20. The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. den Dulk B; van Eijk P; de Ruijter M; Brandsma JA; Brouwer J DNA Repair (Amst); 2008 Jun; 7(6):858-68. PubMed ID: 18387345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]