These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8808388)
1. Perspectives: a proposed general model of the "mechanostat" (suggestions from a new skeletal-biologic paradigm). Frost HM Anat Rec; 1996 Feb; 244(2):139-47. PubMed ID: 8808388 [TBL] [Abstract][Full Text] [Related]
3. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem. Frost HM Anat Rec; 1990 Apr; 226(4):403-13. PubMed ID: 2184695 [TBL] [Abstract][Full Text] [Related]
4. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. Skerry TM J Musculoskelet Neuronal Interact; 2006; 6(2):122-7. PubMed ID: 16849820 [TBL] [Abstract][Full Text] [Related]
5. [Effects of bisphosphonates on the mechanical efficiency of normal and osteopenic bones]. Ferretti JL; Cointry GR; Capozza RF; Mondelo N; Peluffo V; Chiappe A; Meta M; Alippi RM Medicina (B Aires); 1997; 57 Suppl 1():83-92. PubMed ID: 9567360 [TBL] [Abstract][Full Text] [Related]
7. New targets for fascial, ligament and tendon research: a perspective from the Utah paradigm of skeletal physiology. Frost HM J Musculoskelet Neuronal Interact; 2003 Sep; 3(3):201-9. PubMed ID: 15758342 [TBL] [Abstract][Full Text] [Related]
9. On the strength-safety factor (SSF) for load-bearing skeletal organs. Frost HM J Musculoskelet Neuronal Interact; 2003 Jun; 3(2):136-40. PubMed ID: 15758353 [TBL] [Abstract][Full Text] [Related]
10. The benefit of combining non-mechanical agents with mechanical loading: a perspective based on the Utah Paradigm of Skeletal Physiology. Jee WS; Tian XY J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):110-8. PubMed ID: 15951626 [TBL] [Abstract][Full Text] [Related]
11. An application of mechanostat theory to research design: a theoretical model. Grimston SK Med Sci Sports Exerc; 1993 Nov; 25(11):1293-7. PubMed ID: 8289619 [TBL] [Abstract][Full Text] [Related]
12. The effect of early training and the adaptation and conditioning of skeletal tissues. Smith RK; Goodship AE Vet Clin North Am Equine Pract; 2008 Apr; 24(1):37-51. PubMed ID: 18314035 [TBL] [Abstract][Full Text] [Related]
13. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. Frost HM J Bone Miner Metab; 2000; 18(6):305-16. PubMed ID: 11052462 [TBL] [Abstract][Full Text] [Related]
14. Mechanical influences on cells, tissues and organs - 'Mechanical Morphogenesis'. Benjamin M; Hillen B Eur J Morphol; 2003 Feb; 41(1):3-7. PubMed ID: 15121543 [TBL] [Abstract][Full Text] [Related]
15. Cybernetic aspects of bone modeling and remodeling, with special reference to osteoporosis and whole-bone strength. Frost HM Am J Hum Biol; 2001; 13(2):235-48. PubMed ID: 11460869 [TBL] [Abstract][Full Text] [Related]
16. The developing bone: slave or master of its cells and molecules? Rauch F; Schoenau E Pediatr Res; 2001 Sep; 50(3):309-14. PubMed ID: 11518815 [TBL] [Abstract][Full Text] [Related]
18. Clinical biophysics: the promotion of skeletal repair by physical forces. Aaron RK; Ciombor DM; Wang S; Simon B Ann N Y Acad Sci; 2006 Apr; 1068():513-31. PubMed ID: 16831948 [TBL] [Abstract][Full Text] [Related]
19. Changing concepts in skeletal physiology: Wolff's Law, the Mechanostat, and the "Utah Paradigm". Frost HM Am J Hum Biol; 1998; 10(5):599-605. PubMed ID: 28561546 [TBL] [Abstract][Full Text] [Related]
20. Skeletal function and structure: implications for tissue-targeted therapeutics. Shea JE; Miller SC Adv Drug Deliv Rev; 2005 May; 57(7):945-57. PubMed ID: 15876397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]