BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 8808462)

  • 21. A two stage axial flow pump. New approach to reduction of hemolysis.
    Wakisaka Y; Nakatani T; Anai H; Araki K; Taenaka Y; Tatsumi E; Masuzawa T; Baba Y; Eya K; Toda K
    ASAIO J; 1995; 41(3):M584-7. PubMed ID: 8573872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro thrombogenic evaluation of centrifugal pumps.
    Tayama E; Ohtsubo S; Nakazawa T; Takami Y; Niimi Y; Makinouchi K; Glueck J; Nosé Y
    Artif Organs; 1997 May; 21(5):418-20. PubMed ID: 9129776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests.
    Leme J; Fonseca J; Bock E; da Silva C; da Silva BU; Dos Santos AE; Dinkhuysen J; Andrade A; Biscegli JF
    Artif Organs; 2011 May; 35(5):443-7. PubMed ID: 21595709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a pivot bearing supported sealless centrifugal pump for ventricular assist.
    Nakazawa T; Makinouchi K; Ohara Y; Ohtsubo S; Kawahito K; Tasai K; Shimono T; Benkowski R; Damm G; Takami Y; Glueck J; Noon GP; Nosé Y
    Artif Organs; 1996 Jun; 20(6):485-90. PubMed ID: 8817944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo left ventricular assist induced coagulation derangements. Comparison of Sarns-3M and St. Jude Medical circuits.
    Curtis JJ; Wagner-Mann CC; Mann FA; Demmy TL; Walls JT; Schmaltz RA
    ASAIO J; 1997; 43(5):M414-7. PubMed ID: 9360073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.
    Yamada T; Nishimura K; Akamatsu T; Tsukiya T; Park CH; Kono S; Matsuda K; Ban T
    Int J Artif Organs; 1997 Oct; 20(10):562-9. PubMed ID: 9422491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a small centrifugal blood pump with magnetic bearings.
    Jahanmir S; Hunsberger AZ; Ren Z; Heshmat H; Heshmat C; Tomaszewski MJ; Walton JF
    Artif Organs; 2009 Sep; 33(9):714-26. PubMed ID: 19775263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.
    Mitamura Y; Kido K; Yano T; Sakota D; Yambe T; Sekine K; OKamoto E
    Artif Organs; 2007 Mar; 31(3):221-4. PubMed ID: 17343698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.
    Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New centrifugal blood pump with dual impeller and double pivot bearing system: wear evaluation in bearing system, performance tests, and preliminary hemolysis tests.
    Bock E; Ribeiro A; Silva M; Antunes P; Fonseca J; Legendre D; Leme J; Arruda C; Biscegli J; Nicolosi D; Andrade A
    Artif Organs; 2008 Apr; 32(4):329-33. PubMed ID: 18370949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical analysis of the inner flow field of a biocentrifugal blood pump.
    Chua LP; Song G; Lim TM; Zhou T
    Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design considerations of volute geometry of a centrifugal blood pump.
    Chan WK; Wong YW; Hu W
    Artif Organs; 2005 Dec; 29(12):937-48. PubMed ID: 16305649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.
    Dame D
    Artif Organs; 1996 Jun; 20(6):613-7. PubMed ID: 8817965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an implantable centrifugal blood pump for circulatory assist.
    Wakisaka Y; Taenaka Y; Chikanari K; Okuzono Y; Endo S; Takano H
    ASAIO J; 1997; 43(5):M608-14. PubMed ID: 9360117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.
    Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T
    Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro evaluation of the TandemHeart pediatric centrifugal pump.
    Svitek RG; Smith DE; Magovern JA
    ASAIO J; 2007; 53(6):747-53. PubMed ID: 18043160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical study of a centrifugal blood pump with different impeller profiles.
    Song G; Chua LP; Lim TM
    ASAIO J; 2010; 56(1):24-9. PubMed ID: 20019595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of an implantable centrifugal blood pump.
    Goldstein AH; Pacella JJ; Trumble DR; Clark RE
    ASAIO J; 1992; 38(3):M362-5. PubMed ID: 1457882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.