These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8808621)

  • 21. Transformation by integration in Podospora anserina. III. Replacement of a chromosome segment by a two-step process.
    Coppin-Raynal E; Picard M; Arnaise S
    Mol Gen Genet; 1989 Oct; 219(1-2):270-6. PubMed ID: 2575706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epimutation of repeated genes in Ascobolus immersus.
    Rhounim L; Rossignol JL; Faugeron G
    EMBO J; 1992 Dec; 11(12):4451-7. PubMed ID: 1425580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two mechanisms for directional gene conversion.
    Hamza H; Kalogeropoulos A; Nicolas A; Rossignol JL
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7386-90. PubMed ID: 3463974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Masc2, a gene from Ascobolus encoding a protein with a DNA-methyltransferase activity in vitro, is dispensable for in vivo methylation.
    Malagnac F; Grégoire A; Goyon C; Rossignol JL; Faugeron G
    Mol Microbiol; 1999 Jan; 31(1):331-8. PubMed ID: 9987133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of gene conversion in Ascobolus immersus. 3. The interaction of heteroallelas in the conversion process.
    Leblon G; Rossignol JL
    Mol Gen Genet; 1973 Apr; 122(2):165-82. PubMed ID: 4702195
    [No Abstract]   [Full Text] [Related]  

  • 26. Genetic instability in Ascobolus immersus: modalities of back-mutations, intragenic mapping of unstable sites, and unstable insertion. Preliminary biochemical data.
    Decaris B; Francou F; Kouassi A; Lefort C; Rizet G
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 2():509-17. PubMed ID: 6266744
    [No Abstract]   [Full Text] [Related]  

  • 27. Gene conversion: point-mutation heterozygosities lower heteroduplex formation.
    Nicolas A; Rossignol JL
    EMBO J; 1983; 2(12):2265-70. PubMed ID: 6667676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid DNA formation during meiotic recombination.
    Hamza H; Haedens V; Mekki-Berrada A; Rossignol JL
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7648-51. PubMed ID: 6950408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aberrant 4:4 asci, disparity in the direction of conversion, and frequencies of conversion in Ascobolus immersus.
    Rossignol JL; Paquette N; Nicolas A
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1343-52. PubMed ID: 290447
    [No Abstract]   [Full Text] [Related]  

  • 30. Hybrid DNA extension and reciprocal exchanges: alternative issues of an early intermediate during meiotic recombination?
    Langin T; Haedens V; Rossignol JL
    Genetics; 1988 Jun; 119(2):337-44. PubMed ID: 3396867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair.
    Hollingsworth NM; Ponte L; Halsey C
    Genes Dev; 1995 Jul; 9(14):1728-39. PubMed ID: 7622037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis.
    De Massy B; Baudat F; Nicolas A
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11929-33. PubMed ID: 7991559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rec10- and Rec12-independent recombination in meiosis of Schizosaccharomyces pombe.
    Mallela S; Latypov V; Kohli J
    Yeast; 2011 May; 28(5):405-21. PubMed ID: 21387406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel relationships among DNA methylation, histone modifications and gene expression in Ascobolus.
    Barra JL; Holmes AM; Grégoire A; Rossignol JL; Faugeron G
    Mol Microbiol; 2005 Jul; 57(1):180-95. PubMed ID: 15948959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.
    Sun XQ; Li DH; Xue JY; Yang SH; Zhang YM; Li MM; Hang YY
    Mol Biol Evol; 2016 Aug; 33(8):2044-53. PubMed ID: 27189569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methylation of DNA repeats of decreasing sizes in Ascobolus immersus.
    Goyon C; Barry C; Grégoire A; Faugeron G; Rossignol JL
    Mol Cell Biol; 1996 Jun; 16(6):3054-65. PubMed ID: 8649417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Masc2, a C5-DNA-methyltransferase from Ascobolus immersus with similarity to methyltransferases of higher organisms.
    Chernov AV; Vollmayr P; Walter J; Trautner TA
    Biol Chem; 1997 Dec; 378(12):1467-73. PubMed ID: 9461345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span.
    Barra JL; Rhounim L; Rossignol JL; Faugeron G
    Mol Cell Biol; 2000 Jan; 20(1):61-9. PubMed ID: 10594009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Intragenic recombination in eukaryots in the light of studies of the fungus Ascobolus immersus. Intragenic and intergenic recombination].
    Paszewski A; Prazmo W
    Postepy Hig Med Dosw; 1972; 26(5):685-703. PubMed ID: 4652707
    [No Abstract]   [Full Text] [Related]  

  • 40. De novo methylation of repeated sequences in Coprinus cinereus.
    Freedman T; Pukkila PJ
    Genetics; 1993 Oct; 135(2):357-66. PubMed ID: 8244000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.