These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8808701)

  • 1. Studies of X-irradiated bladder cancer cell lines showing differences in p53 status: absence of a p53-dependent cell cycle checkpoint pathway.
    Ribeiro JC; Hanley JR; Russell PJ
    Oncogene; 1996 Sep; 13(6):1269-78. PubMed ID: 8808701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytogenetic damage and the radiation-induced G1-phase checkpoint.
    Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF
    Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cell cycle regulation after exposure to ionizing radiation].
    Teyssier F; Bay JO; Dionet C; Verrelle P
    Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations.
    Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA
    Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation in ovarian carcinoma cell lines.
    Concin N; Stimpfl M; Zeillinger C; Wolff U; Hefler L; Sedlak J; Leodolter S; Zeillinger R
    Int J Oncol; 2003 Jan; 22(1):51-7. PubMed ID: 12469184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between radiation response and p53 status in human bladder cancer cells.
    Ribeiro JC; Barnetson AR; Fisher RJ; Mameghan H; Russell PJ
    Int J Radiat Biol; 1997 Jul; 72(1):11-20. PubMed ID: 9246190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress.
    Offer H; Zurer I; Banfalvi G; Reha'k M; Falcovitz A; Milyavsky M; Goldfinger N; Rotter V
    Cancer Res; 2001 Jan; 61(1):88-96. PubMed ID: 11196204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of Ewing tumor cells to forced and activated p53 expression.
    Kovar H; Pospisilova S; Jug G; Printz D; Gadner H
    Oncogene; 2003 May; 22(21):3193-204. PubMed ID: 12761489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers.
    Sarkar S; Jülicher KP; Burger MS; Della Valle V; Larsen CJ; Yeager TR; Grossman TB; Nickells RW; Protzel C; Jarrard DF; Reznikoff CA
    Cancer Res; 2000 Jul; 60(14):3862-71. PubMed ID: 10919661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G2/M checkpoint is p53-dependent and independent after irradiation in five human sarcoma cell lines.
    Bache M; Dunst J; Würl P; Fröde D; Meye A; Schmidt H; Rath FW; Taubert H
    Anticancer Res; 1999; 19(3A):1827-32. PubMed ID: 10470122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of retinoblastoma gene product in p53-mediated DNA damage response.
    Smith ML; Zhan Q; Bae I; Fornace AJ
    Exp Cell Res; 1994 Dec; 215(2):386-9. PubMed ID: 7982477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia.
    Denko NC; Green SL; Edwards D; Giaccia AJ
    Exp Cell Res; 2000 Jul; 258(1):82-91. PubMed ID: 10912790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
    Cherney BW; Bhatia KG; Sgadari C; Gutierrez MI; Mostowski H; Pike SE; Gupta G; Magrath IT; Tosato G
    Cancer Res; 1997 Jun; 57(12):2508-15. PubMed ID: 9192833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines.
    Aldridge DR; Radford IR
    Cancer Res; 1998 Jul; 58(13):2817-24. PubMed ID: 9661896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer.
    Smith ND; Rubenstein JN; Eggener SE; Kozlowski JM
    J Urol; 2003 Apr; 169(4):1219-28. PubMed ID: 12629332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage.
    Kurdistani SK; Arizti P; Reimer CL; Sugrue MM; Aaronson SA; Lee SW
    Cancer Res; 1998 Oct; 58(19):4439-44. PubMed ID: 9766676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxed cell-cycle arrests and propagation of unrepaired chromosomal damage in cancer cell lines with wild-type p53.
    Olivier M; Bautista S; Vallès H; Theillet C
    Mol Carcinog; 1998 Sep; 23(1):1-12. PubMed ID: 9766432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adriamycin induced G2/M cell cycle arrest in transitional cell cancer cells with wt p53 and p21(WAF1/CIP1) genes.
    Bilim V; Kawasaki T; Takahashi K; Tomita Y
    J Exp Clin Cancer Res; 2000 Dec; 19(4):483-8. PubMed ID: 11277327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status.
    Syljuåsen RG; Krolewski B; Little JB
    Cancer Res; 1999 Mar; 59(5):1008-14. PubMed ID: 10070956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function.
    Bracey TS; Williams AC; Paraskeva C
    Clin Cancer Res; 1997 Aug; 3(8):1371-81. PubMed ID: 9815821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.