These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 8808733)
21. Segmental pattern and nuclei in the human embryonic brain at stage 13. Bruska M; Markowski M; Szyszka-Mróz J; Ulatowska-Błaszyk K; Woźniak W Folia Morphol (Warsz); 1998; 57(4):321-30. PubMed ID: 10437309 [TBL] [Abstract][Full Text] [Related]
22. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Mowery TM; Wilson SM; Kostylev PV; Dina B; Buchholz JB; Prieto AL; Garraghty PE Int J Dev Neurosci; 2015 Feb; 40():15-23. PubMed ID: 25447790 [TBL] [Abstract][Full Text] [Related]
23. Origin and organization of brainstem catecholamine innervation in the rat. Levitt P; Moore RY J Comp Neurol; 1979 Aug; 186(4):505-28. PubMed ID: 15116686 [TBL] [Abstract][Full Text] [Related]
24. Nociceptive changes in rats after prenatal exposure to valproic acid. Schneider T; Labuz D; Przewłocki R Pol J Pharmacol; 2001; 53(5):531-4. PubMed ID: 11990073 [TBL] [Abstract][Full Text] [Related]
25. Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brain stem. Varela-Echavarría A; Pfaff SL; Guthrie S Mol Cell Neurosci; 1996; 8(4):242-57. PubMed ID: 9000439 [TBL] [Abstract][Full Text] [Related]
26. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D. Morriss-Kay G; Tuckett F J Embryol Exp Morphol; 1985 Aug; 88():333-48. PubMed ID: 4078537 [TBL] [Abstract][Full Text] [Related]
27. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice. Marsman D Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194 [TBL] [Abstract][Full Text] [Related]
28. Noradrenergic projections to brainstem nuclei: evidence for differential projections from noradrenergic subgroups. Grzanna R; Chee WK; Akeyson EW J Comp Neurol; 1987 Sep; 263(1):76-91. PubMed ID: 2822772 [TBL] [Abstract][Full Text] [Related]
29. Topography and organization of cranial nerve nuclei in the sand lizard, Lacerta agilis. Székely G; Matesz C J Comp Neurol; 1988 Jan; 267(4):525-44. PubMed ID: 3346375 [TBL] [Abstract][Full Text] [Related]
30. Maternal diabetes in the rat impairs the formation of neural-crest derived cranial nerve ganglia in the offspring. Cederberg J; Picard JJ; Eriksson UJ Diabetologia; 2003 Sep; 46(9):1245-51. PubMed ID: 12830378 [TBL] [Abstract][Full Text] [Related]
31. Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Narita N; Kato M; Tazoe M; Miyazaki K; Narita M; Okado N Pediatr Res; 2002 Oct; 52(4):576-9. PubMed ID: 12357053 [TBL] [Abstract][Full Text] [Related]
32. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Ingram JL; Peckham SM; Tisdale B; Rodier PM Neurotoxicol Teratol; 2000; 22(3):319-24. PubMed ID: 10840175 [TBL] [Abstract][Full Text] [Related]
33. Moderate alcohol exposure compromises neural tube midline development in prenatal brain. Zhou FC; Sari Y; Powrozek T; Goodlett CR; Li TK Brain Res Dev Brain Res; 2003 Aug; 144(1):43-55. PubMed ID: 12888216 [TBL] [Abstract][Full Text] [Related]
34. Facial motor nuclei cell loss with intratemporal facial nerve crush injuries in rats. Marzo SJ; Moeller CW; Sharma N; Cunningham K; Jones KJ; Foecking EM Laryngoscope; 2010 Nov; 120(11):2264-9. PubMed ID: 20830757 [TBL] [Abstract][Full Text] [Related]
35. Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. A possible new animal model of autism. Sabers A; Bertelsen FC; Scheel-Krüger J; Nyengaard JR; Møller A Neurosci Lett; 2014 Sep; 580():12-6. PubMed ID: 25079904 [TBL] [Abstract][Full Text] [Related]
36. The initial development of motor neurons in the neural tube of rat embryos. Matsuda M Congenit Anom (Kyoto); 2002 Jun; 42(2):130-4. PubMed ID: 12196710 [TBL] [Abstract][Full Text] [Related]
37. Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos L.). Arends JJ; Dubbeldam JL J Comp Neurol; 1982 Aug; 209(3):313-29. PubMed ID: 7130459 [TBL] [Abstract][Full Text] [Related]
38. The accessory motor nuclei of the trigeminal, facial, and abducens nerves in the rat. Székely G; Matesz C J Comp Neurol; 1982 Sep; 210(3):258-64. PubMed ID: 7142441 [TBL] [Abstract][Full Text] [Related]
39. Nimodipine-induced improved survival rate of facial motor neurons following intracranial transection of the facial nerve in the adult rat. Mattsson P; Aldskogius H; Svensson M J Neurosurg; 1999 Apr; 90(4):760-5. PubMed ID: 10193622 [TBL] [Abstract][Full Text] [Related]
40. Cryptic responses to tissue manipulations in avian embryos. Wahl C; Noden DM Int J Dev Neurosci; 2001 Apr; 19(2):183-96. PubMed ID: 11255032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]