These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8808775)

  • 1. Permeability to solutes of polyamide capsules with different chemical compositions.
    Tejima T; Jalsenjak I; Kondo T
    J Microencapsul; 1996; 13(4):377-84. PubMed ID: 8808775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability of lipid-coated polymer capsule membranes to solutes: effects of temperature and chemical structure of solutes.
    Totomi N; Makino K; Inoue S; Kondo T
    J Microencapsul; 1995; 12(3):263-71. PubMed ID: 7650591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations.
    Chen X; Boo C; Yip NY
    Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane.
    Sugano K; Nabuchi Y; Machida M; Asoh Y
    Int J Pharm; 2004 May; 275(1-2):271-8. PubMed ID: 15081157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes.
    Drazevic E; Bason S; Kosutic K; Freger V
    Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Kingsbury RS; Perry LA; Coronell O
    Environ Sci Technol; 2017 Feb; 51(4):2295-2303. PubMed ID: 28084076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability coefficient of microcapsule membrane.
    Lee KB; Kondo T
    J Microencapsul; 1984; 1(4):349-56. PubMed ID: 6336535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a dynamic permeation technique for studying drug-macromolecule interactions.
    Bottari F; Colo GD; Nannipieri E; Saettone MF; Serafini MF
    J Pharm Sci; 1975 Jun; 64(6):946-9. PubMed ID: 1133747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and performance characterization of a polyamide nanofiltration membrane modified with covalently bonded aramide dendrimers.
    Saenz de Jubera AM; Herbison JH; Komaki Y; Plewa MJ; Moore JS; Cahill DG; Mariñas BJ
    Environ Sci Technol; 2013 Aug; 47(15):8642-9. PubMed ID: 23796139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeation of permanently positive charged molecules through artificial membranes--influence of physico-chemical properties.
    Fischer H; Kansy M; Avdeef A; Senner F
    Eur J Pharm Sci; 2007 May; 31(1):32-42. PubMed ID: 17416489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms by which small molecules alter ionic permeability through lipid bilayer membranes.
    Szabo G
    Adv Exp Med Biol; 1977; 84():167-90. PubMed ID: 899948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane--mechanisms and implications.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Environ Sci Technol; 2012 Dec; 46(24):13184-92. PubMed ID: 23214945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of butyrylcellulose membranes for benzene/cyclohexane mixtures containing a low benzene concentration by pervaporation.
    Uragami T; Tsukamoto K; Miyata T
    Biomacromolecules; 2004; 5(6):2116-21. PubMed ID: 15530024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane Permeability and Its Activation Energies in Dependence on Analyte, Lipid, and Phase Type Obtained by the Fluorescent Artificial Receptor Membrane Assay.
    Nilam M; Collin S; Karmacharya S; Hennig A; Nau WM
    ACS Sens; 2021 Jan; 6(1):175-182. PubMed ID: 33347764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin.
    Sun SP; Hatton TA; Chung TS
    Environ Sci Technol; 2011 May; 45(9):4003-9. PubMed ID: 21456576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Drug permeation through synthetic lipoid membranes. 6. The influence of volume on the permeation equation].
    Fürst W; Falk M; Neubert R; Klapper I
    Pharmazie; 1975 Sep; 30(9):614-5. PubMed ID: 1187747
    [No Abstract]   [Full Text] [Related]  

  • 17. Estimation of the permeability of cellulosic membranes from solute dimensions and diffusivities.
    Farrell PC; Babb AL
    J Biomed Mater Res; 1973 Jul; 7(4):275-300. PubMed ID: 4725704
    [No Abstract]   [Full Text] [Related]  

  • 18. Proceedings: Permeation of benzocaine through nylon membranes.
    Uyokpeyi V; Padfield JM; Meakin BJ
    J Pharm Pharmacol; 1975 Dec; 27 Suppl?-2():8P. PubMed ID: 2757
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of membrane-solvent-solute interactions on solute permeation in model membranes.
    Dias M; Hadgraft J; Lane ME
    Int J Pharm; 2007 May; 336(1):108-14. PubMed ID: 17204382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.